精英家教网 > 高中数学 > 题目详情

已知函数数学公式,证明:函数f(x)在(-1,+∞)上为增函数.

证明:∵函数=,设 x2>x1>-1,
f(x2)-f(x1)=-( )=(- )+(-
=(- )+
由 x2>x1>-1 可得,(- )>0,>0,故f(x2)-f(x1)>0,即 f(x2)>f(x1),
故函数f(x)在(-1,+∞)上为增函数.
分析:函数=,设 x2>x1>-1,化简f(x2)-f(x1) 等于(- )+,大于零,即f(x2)>f(x1),
从而可得函数f(x)在(-1,+∞)上为增函数.
点评:本题主要考查增函数的定义,证明一个函数在某区间上是增函数的方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例4、已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.
①证明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-
1
2
x2
-2x,g(x)=logax(a>0,且a≠1),其中a为常数.如果h(x)=f(x)+g(x)是增函数,且h′(x)存在零点(h′(x)为h(x)的导函数).
(1)求a的值;
(2)设A(x1,y1)、B(x2,y2)(x1<x2)是函数y=g(x)的图象上两点,g′(x0) =
y2-y1
x2-x1
(g′(x)为g(x)的导函数),证明:x1<x0<x2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+b
1+x2
是定义在(-1,1)上的奇函数,其中a、b∈R且f(
1
2
)=
2
5

(1)求函数f(x)的解析式;
(2)判断函数f(x)在区间(-1,1)上的单调性,并用单调性定义证明你的结论;
(3)解关于t的不等式f(t-1)+f(t2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•蓝山县模拟)已知函数f(x)=
1
3
ax3+
1
2
bx2+cx
(a>0).
(1)若函数f(x)有三个零点分别为x1,x2,x3,且x1+x2+x3=-3,x1x2=-9,求函数f(x)的单调区间;
(2)若f′(1)=-
1
2
a
,3a>2c>2b,证明:函数f(x)在区间(0,2)内一定有极值点;
(3)在(2)的条件下,若函数f(x)的两个极值点之间的距离不小于
3
,求
b
a
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对任意x,y∈R,满足条件f(x)+f(y)=2+f(x+y),且f(3)=5,
(1)求f(1)+f(-1)的值;
(2)若f(x)为R上的增函数,证明:存在唯一的实数,使得对任意x∈(0,1),都有f(x2+2t2x)<3成立.

查看答案和解析>>

同步练习册答案