精英家教网 > 高中数学 > 题目详情
[2014·合肥模拟]f(x)是定义在(0,+∞)上的单调递增函数,满足f(xy)=f(x)+f(y),f(3)=1,当f(x)+f(x-8)≤2时,x的取值范围是________.
(8,9]
2=1+1=f(3)+f(3)=f(9),由f(x)+f(x-8)≤2,可得f[x(x-8)]≤f(9),因为f(x)是定义在(0,+∞)上的增函数,所以有x>0,x-8>0,且x(x-8)≤9,解得8<x≤9.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知f(x)=(x≠a).
(1)若a=-2,试证明f(x)在(-∞,-2)内单调递增;
(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(3分)(2011•重庆)下列区间中,函数f(x)=|lg(2﹣x)|在其上为增函数的是(        )
A.(﹣∞,1]B.C.D.(1,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数在R上存在导数,对任意的,且在.若,则实数的取值范围           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果函数f(x)=ax2-3x+4在区间(-∞,6)上单调递减,则实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知奇函数 f (x) 在 (-¥,0)∪(0,+¥) 上有意义,且在 (0,+¥) 上是增函数,f (1) = 0,又函数 g(q) = sin 2q+ m cos q-2m,若集合M =" {m" | g(q) < 0},集合 N =" {m" | f [g(q)] < 0},求M∩N.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,既是偶函数又在区间(1,2)上单调递增的是(   )
A.                 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=log3(9x)·log3(3x),≤x≤9.
(1)若m=log3x,求m的取值范围.
(2)求f(x)的最值,并给出最值时对应的x的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=x2﹣2x﹣1在闭区间[0,3]上的最大值与最小值的和是(  )
A.﹣1B.0C.1D.2

查看答案和解析>>

同步练习册答案