精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\frac{2x+6}{x+a}$在区间(-2,+∞)上是减函数,则实数a的取值范围是[2,3).

分析 先根据题意研究y=2+$\frac{6-2a}{x+a}$在区间(-2,+∞)上的单调性,然后根据反比例函数的单调性与比例系数符号的关系求出参数a的范围.

解答 解:∵y=2+$\frac{6-2a}{x+a}$在区间(-2,+∞)上为减函数
∴$\left\{\begin{array}{l}-a≤-2\\ 6-2a>0\end{array}\right.$,
解得:a∈[2,3),
故答案为:[2,3)

点评 本题主要考查了函数单调性的应用,以及反比例函数的单调性与比例系数的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.一长直杆长1.5m,垂直立于底部平坦、水面平静无波的游泳池中,露出水面部分高0.3m,当阳光以与水面成37°的夹角入射时,杆在游泳池底部所成的影长为多少?(已知水的折射率n=$\frac{4}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知cosα=-$\frac{3}{5}$,π<α<$\frac{3π}{2}$,则sin2α=$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.解不等式:|x-2|+|2x-1|>x+5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知不等式|x+2|-|x+3|>m.
(1)不等式有解,求m的取值范围;
(2)不等式的解集为R,求m的取值范围;
(3)不等式的解集为空集,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.判断下列对应是不是从A到B的映射:
(1)A=N,B=N*,f:x→|x-1|;
(2)A={x|0≤x≤6},B={y|0≤y≤2},f:x→y=$\frac{1}{2}$x;
(3)A={x|x≥3,x∈N},B={a|a≥0,a∈Z},f:x→a=x2-2x+4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.分别求出满足下列等式的数列{an}的前n项和为Sn
(1)an=2n+1-2n
(2)an=2n+1-(-1)n
(3)an=$\frac{1}{n(n+1)}$;
(4)an=log3$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.[x]表示不超过x的最大整数(称为x的整数部分),则方程|x|(x-[x])=0在[-1,1]上的根有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若定积分${∫}_{-2}^{m}$$\sqrt{-{x}^{2}-2x}$dx=$\frac{π}{4}$,则m等于(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案