精英家教网 > 高中数学 > 题目详情
在△ABC中,a,b,c分别为角A,B,C所对的边,且4sin2
B+C
2
-cos2A=
7
2
.(参考公式:sin2
α
2
=
1-cosα
2
,cos2α=2cos2α-1

(1)求角A的度数;    
(2)若a=
3
,b+c=3,求b和c的值.
分析:(1)已知等式利用二倍角的正弦、余弦函数公式化简,再利用诱导公式变形,求出cosA的值,即可确定出A的度数;
(2)利用余弦定理表示出cosA,再利用完全平方公式变形,将a,b+c及cosA的值代入求出bc的值,与b+c的值联立即可求出b与c的值.
解答:解:(1)由题设得2[1-cos(B+C)]-(2cos2A-1)=
7
2

∵cos(B+C)=-cosA,
∴2(1+cosA)-2cos2A+1=
7
2

整理得(2cosA-1)2=0,
∴cosA=
1
2

∴A=60°;
(2)∵cosA=
b2+c2-a2
2bc
=
(b+c)2-2bc-a2
2bc
=
9-2bc-3
2bc
=
6-2bc
2bc
=
1
2

∴bc=2,
又∵b+c=3,
∴b=1,c=2或b=2,c=1.
点评:此题考查了余弦定理,二倍角的正弦、余弦函数公式,以及诱导公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a<b<c,B=60°,面积为10
3
cm2,周长为20cm,求此三角形的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面积S=
3
3
2
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,若cotA•cotB>1,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)函数的图象是由y=sinx的图象经过如下三步变换得到的:
①将y=sinx的图象整体向左平移
π
6
个单位;
②将①中的图象的纵坐标不变,横坐标缩短为原来的
1
2

③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(1)求f(x)的周期和对称轴;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案