精英家教网 > 高中数学 > 题目详情

【题目】如图,圆的圆心在轴上,且过点.

(1)求圆的方程;

(2)直线轴交于点,点为直线上位于第一象限内的一点,以为直径的圆与圆相交于点.若直线的斜率为-2,求点坐标.

【答案】(1) .

(2)

【解析】分析:(1)由题意得到点连线的垂直平分线,在直线方程中,令可得圆心的坐标,进而可得圆的方程.(2)由题意得根据依题意可设设点坐标为,从而得到直线的方程,解方程组可得点M的坐标为,由点M在圆上可得的值,从而得到点D的坐标.

详解:(1)由题意可得以点为端点的线段的中垂线方程为

,得

故圆心为

所以半径为

所以圆的方程为

(2)由为直径,得

所以

又直线的斜率为-2,

所以

点坐标为

则直线的方程为,直线的方程为

解方程组可得点M的坐标为

又点在圆上,

所以

又因为点位于第一象限,

所以点D的坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线E交于AB两点,且,其中O为原点.

1)求抛物线E的方程;

2)点C坐标为,记直线CACB的斜率分别为,证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且(c﹣2a) =c
(1)求B的大小;
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若对任意的x∈R,都有f(x)≤f(B),求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2cos,直线l的参数方程为 (t为参数),直线l与圆C交于AB两点,P是圆C上不同于AB的任意一点.

(1)求圆心的极坐标;

(2)求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)解关于的不等式

(2)若当恒成立求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积.弧田,由圆弧和其所对的弦所围成.公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与实际面积之间存在误差.现有圆心角为,弦长等于米的弧田. 按照上述经验公式计算所得弧田面积与实际面积的误差为_______平方米.(用“实际面积减去弧田面积”计算)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据下列对几何体结构特征的描述,说出几何体的名称.

1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形;

2)一个等腰梯形绕着两底边中点的连线所在的直线旋转180°形成的封闭曲面所围成的几何体;

3)由五个面围成,其中一个面是正方形,其他各面都是有一个公共顶点的全等三角形;

4)一个圆绕其一条直径所在的直线旋转180°形成的封闭曲面所围成的几何体.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三边是连续的三个自然数.

(Ⅰ求最小边的取值范围

(Ⅱ是否存在这样的,使得其最大内角是最小内角的两倍若存在,试求出这个三角形的三边;若不存在请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校从参加高一年级期中考试的学生中抽出名学生,并统计了她们的数学成绩(成绩均为整数且满分为分),数学成绩分组及各组频数如下:

样本频率分布表:

分组

频数

频率

合计

(1)在给出的样本频率分布表中,求的值;

(2)估计成绩在分以上(含分)学生的比例;

(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在的学生中选两位同学,共同帮助成绩在中的某一位同学.已知甲同学的成绩为分,乙同学的成绩为分,求甲、乙两同学恰好被安排在同一小组的概率.

查看答案和解析>>

同步练习册答案