科目:高中数学 来源: 题型:解答题
若函数满足:集合中至少存在三个不同的数构成等比数列,则称函数是等比源函数.
(1)判断下列函数:①;②中,哪些是等比源函数?(不需证明)
(2)证明:对任意的正奇数,函数不是等比源函数;
(3)证明:任意的,函数都是等比源函数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
观察以下等式:
sin230°+cos260°+sin 30°·cos 60°=,
sin240°+cos270°+sin 40°·cos 70°=,
sin215°+cos245°+sin 15°·cos 45°=.
…
写出反映一般规律的等式,并给予证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某少数民族的刺绣有着悠久的历史,如图(1)(2)(3)(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(1)求出f(5).
(2)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的关系式.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
先阅读下列不等式的证法,再解决后面的问题:
已知a1,a2∈R,a1+a2=1,求证:+≥.
证明:构造函数f(x)=(x-a1)2+(x-a2)2,f(x)对一切实数x∈R,恒有f(x)≥0,则Δ=4-8(+)≤0,∴+≥.
(1)已知a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述结论的推广式;
(2)参考上述解法,对你推广的结论加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设是由个实数组成的行列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.
(Ⅰ) 数表如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);
表1
1 | 2 | 3 | |
1 | 0 | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com