精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=ax5+bx3+cx-18,且f(-3)=32,那么f(3)=-68.

分析 根据条件建立方程关系或者利用函数奇偶性的性质进行求解即可.

解答 解:方法1:∵f(x)=ax5+bx3+cx-18,
∴f(x)+18=ax5+bx3+cx是奇函数,
则f(-3)+18=-[f(3)+18],
即f(3)=-36-f(-3)=-36-32=-68,
方法2:
∵f(-3)=32,
∴f(-3)=-a•35-b•33-3c-18=32,
即a•35+b•33+3c=-18-32=-50,
则f(3)=a•35+b•33+3c-18=-50-18=-68,
故答案为:-68.

点评 本题主要考查函数值的计算,利用方程组法或函数奇偶性的性质进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,离心率e=$\frac{\sqrt{3}}{2}$,过原点的直线l交椭圆E于A,B两点,若|AF|+|BF|=4,则椭圆E的方程是(  )
A.$\frac{{x}^{2}}{2}$+2y2=1B.$\frac{{x}^{2}}{4}$+y2=1C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.投掷一枚均匀的骰子,则落地时,向上的点数是2的倍数的概率是$\frac{1}{2}$;落地时,向上的点数为奇数的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A、B、C的对边分别是a、b、c,若$b-\frac{1}{2}c=acosC$
(1)求角A;
(2)若4(b+c)=3bc,$a=2\sqrt{3}$,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知公差不为0的等差数列{an}的前n项和为${S_n}(n∈{N^*})$,若S3=a4+2,且a1,a3,a13成等比数列
(1)求{an}的通项公式;
(2)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\left\{\begin{array}{l}{x^2}-1,x≤0\\ 3x,x>0\end{array}\right.$,若f(x)=15,则x=(  )
A.4或-4或5B.4或-4C.-4或5D.4或5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.证明下列不等式:
(1)当x>1时,ex>e•x
(2)设x>0,证明:ln(1+x)<x
(3)当x>0时,ln(1+$\frac{1}{x}$)>$\frac{1}{1+x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.$A=\{(x,y)|y=-\sqrt{3}x+m,m∈R\}$,$B=\{(x,y)|\left\{{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array},θ∈(0,2π)}\right.\}$,若A∩B={(cosθ1,sinθ1),(cosθ2,sinθ2)},则m的取值范围为(  )
A.[-2,2]B.(-2,2)C.$[-2,\sqrt{3})∪({\sqrt{3},2}]$D.$(-2,\sqrt{3})∪(\sqrt{3},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合 A={x|a-1≤x≤a+3},集合B是函数f(x)=$\sqrt{x+1}+\sqrt{5-x}$的定义域,
(1)若a=-2,求A∩B;   
(2)若A⊆∁RB,求a的取值范围.

查看答案和解析>>

同步练习册答案