精英家教网 > 高中数学 > 题目详情
16.同学聚会上,某同学从《爱你一万年》,《十年》,《父亲》,《单身情歌》四首歌选出两首歌进行表演,则《爱你一万年》未选取的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

分析 先求出基本事件总数n=${C}_{4}^{2}$=6,《爱你一万年》未选取的对立事件是《爱你一万年》被选取,由此能求出《爱你一万年》未选取的概率.

解答 解:同学聚会上,某同学从《爱你一万年》,《十年》,《父亲》,《单身情歌》四首歌选出两首歌进行表演,
基本事件总数n=${C}_{4}^{2}$=6,
《爱你一万年》未选取的对立事件是《爱你一万年》被选取,
则《爱你一万年》未选取的概率p=1-$\frac{{C}_{3}^{1}}{{C}_{4}^{2}}$=1-$\frac{3}{6}$=$\frac{1}{2}$.
故选:B.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0.b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为双曲线E的两个焦点,且双曲线E的离心率是2.直线AC的斜率为k.则|k|等于(  )
A.2B.$\frac{3}{2}$C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若点P的直角坐标为(1,$\sqrt{3}$),则它的极坐标可以是(  )
A.(2,-$\frac{π}{3}$)B.(2,$\frac{4π}{3}$)C.(2,$\frac{π}{3}$)D.(2,-$\frac{4π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在面积为1的△ABC的边AB上任取一点P,则△PBC的面积不小于$\frac{1}{3}$的概率是(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}满足a1=-40,且nan+1-(n+1)an=2n2+2n,则an取最小值时n的值为10或11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.执行如图的程序框图,则输出S的值是(  )
A.log47B.log23C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|5x>1},集合$B=\left\{{x\left|{{{log}_{\frac{1}{3}}}({x+1})>-1}\right.}\right\}$.
(Ⅰ)求(∁RA)∩B;
(Ⅱ)若集合C={x|x<a},满足B∪C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.把圆x2+y2=16变成椭圆${x′^2}+\frac{y′^2}{16}=1$的伸缩变换为$\left\{\begin{array}{l}{x=4x′}\\{y=y′}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在独立性检验中,统计量Χ2有两个临界值,3.841和6.635,当Χ2>3.841时,有95%的把握说明两个事件有关,当Χ2>6.635时,有99%的把握说明两个事件有关,当Χ2<3.841时,认为两个事件无关,在一项打鼾与患心脏病的调查中,共调出来2000人,经计算Χ2>20.87,根据这一数据分析,认为打鼾与患心脏病之间(  )
A.有95%的把握认为两者有关B.约有95%的打鼾者患心脏病
C.有99%的把握认为两者有关D.约有95%的打鼾者患心脏病

查看答案和解析>>

同步练习册答案