【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务时间的统计数据如下:
超过1小时 | 不超过1小时 | |
男 | 20 | 8 |
女 | 12 | m |
(1)求m,n;
(2)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?
(3)从该校学生中随机调查60名学生,一周参加社区服务时间超过1小时的人数记为X,以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,求X的分布列和数学期望.
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2.
【答案】(1)n=48;m=8(2)没有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关(3)详见解析
【解析】
(1)根据分层抽样方法,计算比例,即可求解;
(2)补全列联表,按照公式计算,根据独立性检验,可得结论;
(3)根据题意,以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,计算概率为,符合二项分布,求出分布列,计算期望.
(1)根据分层抽样法,抽样比例为,
∴n=48;
∴m=48﹣20﹣8﹣12=8;
(2)根据题意完善2×2列联表,如下;
超过1小时 | 不超过1小时 | 合计 | |
男生 | 20 | 8 | 28 |
女生 | 12 | 8 | 20 |
合计 | 32 | 16 | 48 |
计算,
所以没有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关;
(3)参加社区服务时间超过1小时的频率为,
用频率估计概率,从该校学生中随机调査60名学生,则X~B(60,),
所以,k=0,1,2,3,…,60;
.
科目:高中数学 来源: 题型:
【题目】已知函数,,.
(1)当时,若对任意均有成立,求实数k的取值范围;
(2)设直线与曲线和曲线均相切,切点分别为,,其中.
①求证:;
②当时,关于x的不等式恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是偶函数,且当时,
(1)当时,求的解析式;
(2)设函数在区间上的最大值为,试求的表达式;
(3)若方程有四个不同的实根,且它们成等差数列,试探求与满足的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知某市穿城公路自西向东到达市中心后转向东北方向,,现准备修建一条直线型高架公路,在上设一出入口,在上设一出入口,且要求市中心到所在的直线距离为.
(1)求,两出入口间距离的最小值;
(2)在公路段上距离市中心点处有一古建筑(视为一点),现设立一个以为圆心,为半径的圆形保护区,问如何在古建筑和市中心之间设计出入口,才能使高架公路及其延长线不经过保护区?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(x+)(A>0,>0,0<<)的部分图象如图所示,又函数g(x)=f(x+).
(1)求函数g(x)的单调增区间;
(2)设ABC的内角ABC的对边分别为abc,又c=,且锐角C满足g(C)= -1,若sinB=2sinA,,求ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标中,圆,圆。
(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆的极坐标方程,并求出圆的交点坐标(用极坐标表示);
(Ⅱ)求圆的公共弦的参数方程。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com