精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若函数处的切线方程为,求实数的值;

(2)若函数两处取得极值,求实数的取值范围;

(3)在(2)的条件下,若,求实数的取值范围.

【答案】(1);(2);(3).

【解析】

(1)由题意得:,解得.

(2)由题意知:有两个零点

,而.

时和时分类讨论,解得:.经检验,合题;

(3)由题意得,,即.

所以,令,即

,求导,得上单调递减,即.

.令,求导得上单调递减,得的取值范围.

(1)

由题意得:,即

,所以.

(2)由题意知:有两个零点

,而.

①当时,恒成立

所以单调递减,此时至多1个零点(舍).

②当时,令,解得:

上单调递减,在上单调递增,

所以

因为有两个零点,所以

解得:.

因为,且

上单调递减,

所以上有1个零点;

又因为(易证),

上单调递增,

所以上有1个零点.

综上:.

(3)由题意得,,即.

所以,令,即

,而

所以上单调递减,即

所以上单调递减,即.

因为.

,而恒成立,

所以上单调递减,又

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,在抛物线上且满足,当取最大值时,点恰好在以为焦点的双曲线上,则双曲线的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中是自然常数.

(1)判断函数内零点的个数,并说明理由;

(2) ,使得不等式成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)满足:对于st∈[0+∞),都有f(s)≥0f(t)≥0,且f(s)+f(t)≤f(s+t)则称函数f (x)“T函数”.

(I)试判断函数f1(x)=x2f2(x)=lg(x+1)是否是“T函数”,并说明理由;

(Ⅱ)f (x)“T函数”,且存在x0∈[0+∞),使f(f(x0))=x0.求证f (x0) =x0

(Ⅲ)试写出一个“T函数”f(x)满足f(1)=1,且使集合{y|y=f(x)0≤x≤1)中元素的个数最少.(只需写出结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当时,设,满足恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1 (t为参数,t≠0),其中0≤απ.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2ρ2sin θC3ρ2cos θ.

(1)C2C3交点的直角坐标;

(2)C1C2相交于点AC1C3相交于点B,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线与函数图像交于异于原点不同的两点且点若点满足,则( )

A. B. 2 C. 4 D. 6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“人机大战,柯洁哭了,机器赢了”,2017年5月27日,岁的世界围棋第一人柯洁不敌人工智能系统AlphaGo,落泪离席.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查.在参与调查的男性中,有人持反对意见,名女性中,有人持反对意见.再运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是( )

A.分层抽样B.回归分析C.独立性检验D.频率分布直方图

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次体育兴趣小组的聚会中,要安排6人的座位,使他们在如图所示的6个椅子中就坐,且相邻座位(1223)上的人要有共同的体育兴趣爱好.现已知这6人的体育兴趣爱好如下表所示,且小林坐在1号位置上,则4号位置上坐的是

小林

小方

小马

小张

小李

小周

体育兴趣爱好

篮球,网球,羽毛球

足球,排球,跆拳道

篮球,棒球,乒乓球

击剑,网球,足球

棒球,排球,羽毛球

跆拳道,击剑,自行车

A.小方B.小张C.小周D.小马

查看答案和解析>>

同步练习册答案