精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.
(1)记集合M={(a,b,c)|a,b,c不能构成一个三角形的三条边长,且a=b},则(a,b,c)∈M所对应的f(x)的零点的取值集合为______.
(2)若a,b,c是△ABC的三条边长,则下列结论正确的是______.(写出所有正确结论的序号)
①?x∈(-∞,1),f(x)>0;
②?x∈R,使ax,bx,cx不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,则?x∈(1,2),使f(x)=0.
(1)因为c>a,由c≥a+b=2a,所以
c
a
≥2
,则ln
c
a
≥ln2>0

令f(x)=ax+bx-cx=2ax-cx=cx[2(
a
c
)x-1]=0

(
c
a
)x=2
,所以x=
ln2
ln
c
a
ln2
ln2
=1

所以0<x≤1.
故答案为{x|0<x≤1};
(2)因为f(x)=ax+bx-cx=cx[(
a
c
)x+(
b
c
)x-1]

a
c
<1,
b
c
<1

所以对?x∈(-∞,1),(
a
c
)x+(
b
c
)x-1>(
a
c
)1+(
b
c
)1-1=
a+b-c
c
>0

所以命题①正确;
令x=-1,a=2,b=4,c=5.则ax=
1
2
,bx=
1
4
,cx=
1
5
.不能构成一个三角形的三条边长.
所以命题②正确;
若三角形为钝角三角形,则a2+b2-c2<0.
f(1)=a+b-c>0,f(2)=a2+b2-c2<0.
所以?x∈(1,2),使f(x)=0.
所以命题③正确.
故答案为①②③.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
xx-1
(x>1),若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中a,b,c是△ABC的三条边,且c>a,c>b,则“△ABC为钝角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)(文)设函数f(x)=ax+1-2(a>1)的反函数为y=f-1(x),则f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设函数f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a为如图所示的程序框图中输出的结果,则f(x)的展开式中常数项是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步练习册答案