精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)是二次函数,且图象过点(0,2),f(1)=0,f(3)=14,则函数f(x)的解析式为f(x)=3x2-5x+2.

分析 设函数f(x)=ax2+bx+c,根据已知构造关于a,b,c的方程组,解得答案.

解答 解:设函数f(x)=ax2+bx+c,
∵图象过点(0,2),f(1)=0,f(3)=14,
∴$\left\{\begin{array}{l}c=2\\ a+b+c=0\\ 9a+3b+c=14\end{array}\right.$,
解得:$\left\{\begin{array}{l}a=3\\ b=-5\\ c=2\end{array}\right.$,
∴f(x)=3x2-5x+2,
故答案为:f(x)=3x2-5x+2

点评 本题考查的知识点是二次函数的图象和性质,函数解析式的求法,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.用下列方法给定数列{an},a0=$\frac{1}{2}$,ak=ak-1+$\frac{1}{n}$a2k-1(k=1,2,3…),证明:1-$\frac{1}{n}$<an<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知x>0,y>0,且x+2y=1,则$\frac{2}{x}$+$\frac{1}{y}$的最小值为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知2sin2α+5cos(-α)=4.且α是第一象限角.求下列各式的值;
(1)sin($\frac{π}{2}$+α);
(2)tan(α+π)+$\frac{sin(\frac{3π}{2}-α)}{cos(π-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$lo{g}_{2}[-a{x}^{2}+(a+1)x-1]$(a≠1)的定义域为集合A.
(1)若a=-1,求函数f(x)的零点;
(2)根据a的不同取值,求出集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知复数z=$\frac{(-1+3i)(1-i)-(1+3i)}{i}$,ω=z+ai(a∈R),当|$\frac{w}{z}$|≤$\sqrt{2}$时,a的取值范围是[1$-\sqrt{3}$,$1+\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow{a}$=(0,-2$\sqrt{3}}$),$\overrightarrow b$=(1,$\sqrt{3}}$),则$\overrightarrow{a}$在$\overrightarrow b$上的正射影的数量为(  )
A.$\sqrt{3}$B.3C.-$\sqrt{3}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.a,b,c为三个人,命题P:“如果b的年龄不是最大的,那么a的年龄最小”和命题Q:“如果c的年龄不是最小的,那么a的年龄最大”都是真命题,则a,b,c的年龄大小顺序是(  )
A.b>a>cB.a>c>bC.c>b>aD.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.记函数f(x)=ex的图象为C,函数g(x)=kx-k的图象记为l.
(1)若直线l是曲线C的一条切线,求实数k的值.
(2)当x∈(1,3)时,图象C恒在l上方,求实数k的取值范围.
(3)若图象C与l有两个不同的交点A、B,其横坐标分别是x1、x2,设x1<x2,求证:x1x2<x1+x2

查看答案和解析>>

同步练习册答案