精英家教网 > 高中数学 > 题目详情

【题目】一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如表:

网购金额

(单位:千元)

频数

频率

3

9

15

18

合计

60

若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为.

(1)确定的值,并补全频率分布直方图;

(2)试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.

【答案】(1) ,图见解析;(2)网店当日不能被评为“皇冠店”.

【解析】试题分析:(1)由题意,得,从而得解;

(2)由频率分布直方图的每一个小矩形的面积乘以横坐标的中点值求和得平均数,中位数左边和右边的小长方形的面积和是相等的,进而比较即可.

试题解析:

(1)由题意,得

化简,得

解得.

.

补全的频率分布直方图如图所示:

(2)设这60名网友的网购金额的平均数为.

(千元)

又∵.

∴这60名网友的网购金额的中位数为(千元),

∵平均数,中位数

∴根据估算判断,该网店当日不能被评为“皇冠店”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知ABC为等腰直角三角形, 分别是边的中点,现将沿折起,使平面 分别是边的中点,平面 分别交于 两点.

(1)求证:

(2)求二面角的余弦值;

(3)的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 的左、右焦点分别为,上顶点为,过点垂直的直线交轴负半轴于点,且.

Ⅰ)求椭圆的离心率;

Ⅱ)若过三点的圆恰好与直线 相切,求椭圆的方程;

III)在(Ⅱ)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 为椭圆 上任一点, 为椭圆的焦点,,离心率为

(1)求椭圆的标准方程;

(2)直线 经过点 ,且与椭圆交于 两点,若直线 的斜率依次成等比数列,求直线 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某礼品店要制作一批长方体包装盒,材料是边长为的正方形纸板.如图所示,先在其中相邻两个角处各切去一个边长是的正方形,然后在余下两个角处各切去一个长、宽分别为的矩形,再将剩余部分沿图中的虚线折起,做成一个有盖的长方体包装盒.

(1)求包装盒的容积关于的函数表达式,并求函数的定义域;

(2)为多少时,包装盒的容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

I)若a=1,求在区间[0,3]上的最大值和最小值;

II)解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在测试中,客观题难度的计算公式为,其中为第题的难度, 为答对该题的人数, 为参加测试的总人数.现对某校高三年级240名学生进行一次测试,共5道客观题,测试前根据对学生的了解,预估了每道题的难度,如表所示:

题号

1

2

3

4

5

考前预估难度

0.9

0.8

0.7

0.6

0.4

测试后,从中随机抽取了20名学生的答题数据进行统计,结果如表:

(Ⅰ)根据题中数据,估计中240名学生中第5题的实测答对人数;

(Ⅱ)从抽样的20名学生中随机抽取2名学生,记这2名学生中第5题答对的人数为,求的分布列和数学期望;

(Ⅲ)试题的预估难度和实测难度之间会有偏差.设为第题的实测难度,请用设计一个统计量,并制定一个标准来判断本次测试对难度的预估是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方体的棱长为1,点是棱上的动点,是棱上一点,.

(1)求证:

(2)若直线平面,试确定点的位置,并证明你的结论;

(3)设点在正方体的上底面上运动,求总能使垂直的点所形成的轨迹的长度.(直接写出答案)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数>0, ≠1, ≠﹣1),是定义在(﹣1,1)上的奇函数.

(1)求实数的值;

(2)当=1时,判断函数在(﹣1,1)上的单调性,并给出证明;

(3)若,求实数的取值范围.

查看答案和解析>>

同步练习册答案