精英家教网 > 高中数学 > 题目详情
(2013•肇庆二模)已知集合A={1,2},B={6},C={2,4,7},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为(  )
分析:根据题意,先求得若从三个集合中选出的是不同的三个数,确定的不同点的个数,进而考虑若A、C选取的元素相同都是2,则可以确定3个不同的点,进而计算可得答案.
解答:解:若从三个集合中选出的是不同的三个数,则可以组成5
A
3
3
=30个不同的点,
若A、C选取的元素相同都是2,则可以确定3个不同的点,
故共有33个不同的点.
故选A.
点评:本题考查排列、组合的综合运用,注意从反面分析,并且注意到集合A、C中有相同元素2而导致出现的重复情况.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•肇庆二模)(坐标系与参数方程选做题)
若以直角坐标系的x轴的非负半轴为极轴,曲线l1的极坐标系方程为ρsin(θ-
π
4
)=
2
2
(ρ>0,0≤θ≤2π),直线l2的参数方程为
x=1-2t
y=2t+2
(t为参数),则l1与l2的交点A的直角坐标是
(1,2)
(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)定义全集U的子集M的特征函数为fM(x)=
1,x∈M
0,x∈CUM
,这里?UM表示集合M在全集U中的补集,已M⊆U,N⊆U,给出以下结论:
①若M⊆N,则对于任意x∈U,都有fM(x)≤fN(x);
②对于任意x∈U都有fCUM(x)=1-fM(x)
③对于任意x∈U,都有fM∩N(x)=fM(x)•fN(x);
④对于任意x∈U,都有fM∪N(x)=fM(x)•fN(x).
则结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)不等式|2x+1|>|5-x|的解集是
(-∞,-6)∪(
4
3
,+∞)
(-∞,-6)∪(
4
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)在等差数列{an}中,a15=33,a25=66,则a35=
99
99

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)
π
2
0
(3x+sinx)dx=
3
8
π2+1
3
8
π2+1

查看答案和解析>>

同步练习册答案