精英家教网 > 高中数学 > 题目详情
12.已知f(x)=$\left\{\begin{array}{l}{(6-a)x-4a,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$在区间(-∞,+∞)上是单调递增函数,则实数a的取值范围是(  )
A.(1,6)B.[$\frac{6}{5}$,6)C.[1,$\frac{6}{5}$]D.(1,+∞)

分析 根据一次函数、对数函数的单调性,以及增函数的定义,便可由f(x)在区间(-∞,+∞)上单调递增便可得出$\left\{\begin{array}{l}{6-a>0}\\{a>1}\\{(6-a)•1-4a≤lo{g}_{a}1}\end{array}\right.$,从而解该不等式组便可得出实数a的取值范围.

解答 解:f(x)在(-∞,+∞)上为单调递增函数;
∴$\left\{\begin{array}{l}{6-a>0}\\{a>1}\\{(6-a)•1-4a≤lo{g}_{a}1}\end{array}\right.$;
解得,$\frac{6}{5}≤a<6$;
∴实数a的取值范围为$[\frac{6}{5},6)$.
故选B.

点评 考查一次函数、对数函数的单调性,以及增函数的定义,分段函数单调性的判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知向量|$\overrightarrow{a}$|=2,(2$\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+2$\overrightarrow{b}$)=-1,向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,则|$\overrightarrow{b}$|等于(  )
A.1B.3C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如果如图程序运行后输出的结果是132,那么在程序中while后面的表达式应为(  )
A.i>11B.i≥11C.i≤11D.i<11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.两圆x2+y2=9和x2+y2-8x+6y+9=0的公切线条数是(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知直线x-2y+1=0与直线2x-4y+1=0平行,则这两条平行线之间的距离为$\frac{\sqrt{5}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.△ABC的面积为S,α是三角形的内角,O是平面ABC内一点,且满足$\sqrt{2}$$\overrightarrow{OA}$+sinα$\overrightarrow{OB}$+cosα$\overrightarrow{OC}$=$\overrightarrow{0}$,则下列判断正确的是(  )
A.S△AOC的最小值为$\frac{1}{2}$SB.SAOB的最小值为($\sqrt{2}$-1)S
C.S△AOC+S△AOB的最大值为$\frac{1}{2}$SD.S△BOC的最大值为($\sqrt{2}$-1)S

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示数阵,记an为数字n的个数,记An为an个数字n的和.已知数列{bn}满足bn=$\frac{1}{{A}_{n}+5n}$,Bn为数列{bn}的前n项和,且Bn<t恒成立.
(1)an=2n-1;An=2n2-n;
(2)已知椭圆C的标准方程为:$\frac{{x}^{2}}{2{t}^{2}}$+$\frac{{y}^{2}}{{t}^{2}}$=1(t>0).P为C的下顶点,过点P的直线l斜率为t.直线l过定点M,且与C交于另一点N.若PN的中点为E,求$\frac{EP}{MP}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=x•1nx,g(x)=ax2-2ax+1.
(1)求函数f(x)的单调区间;
(2)若x∈[1,2],a∈[1,2],求证:f(x)≥g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若弹簧挂着的小球做简谐运动,时间t(s)与小球相对于平衡位置(即静止时的位置)的高度h(cm)之间的函数关系式是h=2sin(ωt+$\frac{π}{4}$),t∈[0,+∞),其图象如图所示.
(1)求ω(ω>0)的值;
(2)小球开始运动(即t=0)时的位置在哪里?
(3)小球运动的最高点、最低点与平衡位置的距离分别是多少?

查看答案和解析>>

同步练习册答案