精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,抛物线的方程为

(1)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,求的极坐标方程;

(2)直线的参数方程是为参数),交于两点, ,求的斜率.

【答案】(1);(2) 1或-1.

【解析】试题分析:(1)抛物线的方程可利用公式化成极坐标方程;(2)由直线的参数方程求出直线的极坐标方程,再将的极坐标方程代入的极坐标方程,根据即可求出直线的斜率.

试题解析:(1)由可得,

抛物线的极坐标方程

(2)在(1)中建立的极坐标系中,直线的极坐标方程为

所对应的极径分别为,将的极坐标方程代入的极坐标方程得

,

(否则,直线与抛物线没有两个公共点)

于是

所以的斜率为1或-1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线),焦点为,直线交抛物线两点,的中点,且

(1)求抛物线的方程;

(2)若,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b∈R,函数f(x)=4ax2﹣2bx﹣a+b,x∈[0,1].
(1)当a=b=2时,求函数f(x)的最大值;
(2)证明:函数f(x)的最大值|2a﹣b|+a;
(3)证明:f(x)+|2a﹣b|+a≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,随机抽取了6个试销售数据,得到第i个销售单价xi(单位:元)与销售yi(单位:件)的数据资料,算得
(1)求回归直线方程
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入﹣成本) 附:回归直线方程 中, = = ,其中 是样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(不等式选讲)

已知函数

(1)若,解不等式

(2)若不等式在R上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线x2﹣2y2=2的左、右两个焦点为F1、F2 , 动点P满足|PF1|+|PF2|=4.
(1)求动点P的轨迹E的方程;
(2)设过F2且不垂直于坐标轴的动直线l交轨迹E于A,B两点,问:线段OF2上是否存在一点D,使得以DA,DB为邻边的平行四边形为菱形?作出判断并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=lnx+ax2﹣(a+2)x在 处取得极大值,则正数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 通项公式为
(1)计算f(1),f(2),f(3)的值;
(2)比较f(n)与1的大小,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABCA1B1C1中,ABACEBC的中点,求证:

(Ⅰ)平面AB1E⊥平面B1BCC1

(Ⅱ)A1C//平面AB1E

查看答案和解析>>

同步练习册答案