【题目】设函数, ,其中是实数.
(1)解关于的不等式.
(2)若,求关于的方程实根的个数.
【答案】(1)或;(2)见解析
【解析】试题分析:(1)对函数的两个零点大小进行讨论,即, 和三种情形进行讨论,可得不等式的解;(2)对的值分成两大类和,而在后一种当中又分为, , 且和四种结果可得最后结果.
试题解析:(1),
当,即或时,不等式的解为或;
当,即或时,不等式的解为;
当,即,不等式的解为或,
综上知, 或时,不等式的解集为或;
或时,不等式的解集为;
时,不等式的解集为或.
()由方程得, .
当时,由①得,所以原方程有唯一解,
当时,由①得判别式,
)时, ,方程①有两个相等的根,
所以原方程有唯一的解.
)时, ,方程①有两个相等的根,
所以原方程有唯一的解.
)且时,方程①整理为,
解得, .
由于,所以,其中, ,
即,故原方程有两解.
)时,由)知,即,
故不是原方程的解,而,故原方程有唯一解.
综上所述:当或或时,原方程唯一解.
当且且时,原方程有两解.
科目:高中数学 来源: 题型:
【题目】设数列的前项和为,,.
(1)求数列的通项公式;
(2)设数列满足:
对于任意,都有成立.
①求数列的通项公式;
②设数列,问:数列中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点的直线与圆相切,且与直线垂直,则( )
A. 2 B. 1 C. D.
【答案】A
【解析】因为点P(2,2)满足圆的方程,所以P在圆上,
又过点P(2,2)的直线与圆相切,且与直线axy+1=0垂直,
所以切点与圆心连线与直线axy+1=0平行,
所以直线axy+1=0的斜率为: .
故选A.
点睛:对于直线和圆的位置关系的问题,可用“代数法”或“几何法”求解,直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的,解题时不要单纯依靠代数计算,若选用几何法可使得解题过程既简单又不容易出错.
【题型】单选题
【结束】
23
【题目】设分别是双曲线的左、右焦点.若点在双曲线上,且,则 ( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一个居民月用电量标准,用电量不超过的部分按平价收费,超出的部分按议价收费.为此,政府调查了100户居民的月平均用电量(单位:度),以, , , , , , 分组的频率分布直方图如图所示.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)如果当地政府希望使左右的居民每月的用电量不超出标准,根据样本估计总体的思想,你认为月用电量标准应该定为多少合理?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱中,底面为正三角形, 底面,且, 是的中点.
(1)求证: 平面;
(2)求证:平面平面;
(3)在侧棱上是否存在一点,使得三棱锥的体积是?若存在,求出的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若平面点集满足:任意点,存在,都有,则称该点集是“阶聚合”点集。现有四个命题:
①若,则存在正数,使得是“阶聚合”点集;
②若,则是“阶聚合”点集;
③若,则是“2阶聚合”点集;
④若是“阶聚合”点集,则的取值范围是.
其中正确命题的序号为( )
A. ①④ B. ②③ C. ①② D. ③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中, 底面, , , , 是棱上一点.
(I)求证: .
(II)若, 分别是, 的中点,求证: 平面.
(III)若二面角的大小为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知梯形与梯形全等, , , , , , 为中点.
(Ⅰ)证明: 平面
(Ⅱ)点在线段上(端点除外),且与平面所成角的正弦值为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com