精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的五面体中, ,四边形为正方形,平面平面

(1)证明:在线段上存在一点,使得平面

(2)求的长.

【答案】(1)证明见解析;(2)2.

【解析】试题分析:(1)的中点,连接,由正方形的性质可证明四边形为平行四边形,故由线面平行的判定定理可得平面就是符合条件的点;(2)由平面平面及可得平面可得中,由余弦定理,得,由(1)得根据勾股定理可得

试题解析:(1)取的中点,连接

因为

,所以,又四边形是正方形,所以

故四边形为平行四边形,故

因为平面 平面

所以平面

(2)因为平面平面,四边形为正方形,所以

所以平面

中,因为,故,又

所以由余弦定理,得,由(1)得

【方法点晴】本题主要考查线面平行的判定定理、面面垂直的性质定理,属于难题. 证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知

1若关于的方程上恒成立,求的值;

2)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了鼓励学生热心公益,服务社会,成立了“慈善义工社”.2017年12月,该校“慈善义工社”为学生提供了4次参加公益活动的机会,学生可通过网路平台报名参加活动.为了解学生实际参加这4次活动的情况,该校随机抽取100名学生进行调查,数据统计如下表,其中“√”表示参加,“×”表示未参加.

(Ⅰ)从该校所有学生中任取一人,试估计其2017年12月恰参加了2次学校组织的公益活动的概率;

(Ⅱ)若在已抽取的100名学生中,2017年12月恰参加了1次活动的学生比4次活动均未参加的学生多17人,求的值;

(Ⅲ)若学生参加每次公益活动可获得10个公益积分,试估计该校4000名学生中,2017年12月获得的公益积分不少于30分的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中 为自然对数的底数, ……).

(1)令,若对任意的恒成立,求实数的值;

(2)在(1)的条件下,设为整数,且对于任意正整数,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AC是圆O的直径,点B在圆O上,∠BAC30°BMAC于点MEA⊥平面ABCFCEAAC4EA3FC1.

(1)证明:EMBF

(2)求平面BEF与平面ABC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,上顶点为,直线与直线垂直,椭圆经过点

(1)求椭圆的标准方程;

(2)过点作椭圆的两条互相垂直的弦.若弦的中点分别为,证明:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于集合,定义了一种运算,使得集合中的元素间满足条件:如果存在元素,使得对任意,都有,则称元素是集合对运算的单位元素.例如: ,运算为普通乘法;存在,使得对任意,都有,所以元素是集合对普通乘法的单位元素.

下面给出三个集合及相应的运算

,运算为普通减法;

{表示阶矩阵, },运算为矩阵加法;

(其中是任意非空集合),运算为求两个集合的交集.

其中对运算有单位元素的集合序号为( )

A. ①② B. ①③ C. ①②③ D. ②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为圆柱的母线, 是底面圆的直径, 的中点.

(Ⅰ)问: 上是否存在点使得平面?请说明理由;

(Ⅱ)在(Ⅰ)的条件下,若平面,假设这个圆柱是一个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果小鱼游到四棱锥外会有被捕的危险,求小鱼被捕的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆经过为坐标原点,线段的中点在圆上.

(1)求的方程;

(2)直线不过曲线的右焦点,与交于两点,且与圆相切,切点在第一象限, 的周长是否为定值?并说明理由.

查看答案和解析>>

同步练习册答案