已知函数
(1)若函数在点处的切线方程为,求的值;
(2)若,函数在区间内有唯一零点,求的取值范围;
(3)若对任意的,均有,求的取值范围.
(1),;(2)或;(3).
解析试题分析:本题考查导数的运算,利用导数求切线方程、判断函数的单调性、求函数的最值等基础知识,考查函数思想、分类讨论思想,考查综合分析和解决问题的能力.第一问,利用导数求切线方程,先求导,将切点的横坐标代入到导数中,得到切线的斜率,再求即切点的纵坐标,直接利用点斜式写出切线方程;第二问,先将代入得到解析式,求导数,判断函数的单调性,因为在有唯一的零点,所以或,所以解得或;第三问,属于恒成立问题,通过分析题意,可以转化为在上的最大值与最小值之差,因为,所以讨论的正负来判断的正负,当时,为单调函数,所以,当时,需列表判断函数的单调性和极值来决定最值的位置,这种情况中还需要讨论与1的大小.
试题解析:(1) ,所以,得. 2分
又,所以,得. 3分
(2) 因为所以, . 4分
当时,,当时,
所以在上单调递减,在上单调递增 5分
又,可知在区间内有唯一零点等价于
或, . 7分
得或. 8分
(3)若对任意的,均有,等价于
在上的最大值与最小值之差 10分
(ⅰ) 当时,在上,在上单调递增,
由,得,
所以 9分
(ⅱ)当时,由得
由得或
科目:高中数学 来源: 题型:解答题
已知函数,,其中.
(Ⅰ)讨论的单调性;
(Ⅱ)若在其定义域内为增函数,求正实数的取值范围;
(Ⅲ)设函数,当时,若,,总有成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,为实数)有极值,且在处的切线与直线平行.
(Ⅰ)求实数a的取值范围;
(Ⅱ)是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值;若不存在,请说明理由;
(Ⅲ)设函数试判断函数在上的符号,并证明:
().
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,其中是自然对数的底数,.
(1)若,求曲线在点处的切线方程;
(2)若,求的单调区间;
(3)若,函数的图象与函数的图象有3个不同的交点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,的图象经过和两点,如图所示,且函数的值域为.过该函数图象上的动点作轴的垂线,垂足为,连接.
(I)求函数的解析式;
(Ⅱ)记的面积为,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com