精英家教网 > 高中数学 > 题目详情
(2013•朝阳区二模)如图,四边形ABCD是正方形,EA⊥平面ABCD,EA∥PD,AD=PD=2EA=2,F,G,H分别为PB,EB,PC的中点.
(Ⅰ)求证:FG∥平面PED;
(Ⅱ)求平面FGH与平面PBC所成锐二面角的大小;
(Ⅲ)在线段PC上是否存在一点M,使直线FM与直线PA所成的角为60°?若存在,求出线段PM的长;若不存在,请说明理由.
分析:(Ⅰ)由三角形的中位线定理得到线线平行,然后直接利用线面平行的判定定理得到线面平行;
(Ⅱ)建立空间直角坐标系,根据两个平面的法向量所成的角与二面角相等或互补,由两个平面法向量所成的角求解二面角的大小;
(Ⅲ)假设存在点M,由共线向量基本定理得到M点的坐标,其中含有一个未知量,然后利用直线FM与直线PA所成的角为
60°转化为两向量所成的角为60°,由两向量的夹角公式求出M点的坐标,得到的M点的坐标符合题意,说明假设成立,最后得到结论.
解答:(Ⅰ)证明:因为F,G分别为PB,BE的中点,所以FG∥PE.
又FG?平面PED,PE?平面PED,所以FG∥平面PED.
(Ⅱ)解:因为EA⊥平面ABCD,所以PD⊥平面ABCD,所以PD⊥AD,PD⊥CD.
又因为四边形ABCD是正方形,所以AD⊥CD.
如图建立空间直角坐标系,

因为AD=PD=2EA,所以D(0,0,0),P(0,0,2),A(2,0,0),
C(0,2,0),B(2,2,0),E(2,0,1).
因为F,G,H分别为PB,EB,PC的中点,所以F(1,1,1),G(2,1,
1
2
),H(0,1,1).
所以
GF
=(-1,0,
1
2
)
GH
=(-2,0,
1
2
)

n1
=(x1y1z1)
为平面FGH的一个法向量,则
n1
GF
=0
n1
GH
=0
,即
-x1+
1
2
z1=0
-2x1+
1
2
z1=0

再令y1=1,得
n1
=(0,1,0)

PB
=(2,2,-2),
PC
=(0,2,-2)

n2
=(x2y2z2)
为平面PBC的一个法向量,则
n2
PB
=0
n2
PC
=0
,即
2x2+2y2-2z2=0
2y2-2z2=0

令z2=1,得
n2
=(0,1,1)

所以|cos<
n1
n2
>|=
|
n1
n2
|
|
n1
|•|
n2
|
=
|(0,1,0)•(0,1,1)|
2
=
2
2

所以平面FGH与平面PBC所成锐二面角的大小为
π
4

(Ⅲ)在线段PC上存在点M,使直线FM与直线PC所成角为60°
证明:假设在线段PC上存在点M,使直线FM与直线PC所成角为60°.
依题意可设
PM
PC
,其中0≤λ≤1.
PC
=(0,2,-2)
,则
PM
=(0,2λ,-2λ)

又因为
FM
=
FP
+
PM
FP
=(-1,-1,1)

所以
FM
=(-1,2λ-1,1-2λ)

又直线FM与直线PA成60°角,
PA
(2,0,-2)

所以|cos<
FM
PA
>|=
1
2
,即
1
2
=
|-2-2+4λ|
2
2
1+2(2λ-1)2
,解得:λ=
5
8

所以
PM
=(0,
5
4
,-
5
4
)
|
PM
|=
0+2×(
5
4
)2
=
5
2
4

所以,在线段PC上存在点M,使直线FM与直线PC所成角为60°,此时PM的长为
5
2
4
点评:本题考查了线面平行的判定,考查了线线角和面面角,训练了利用平面法向量求解二面角的大小,解答此类问题的关键是正确建系,准确求用到的点的坐标,此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•朝阳区二模)为了解某市今年初二年级男生的身体素质状况,从该市初二年级男生中抽取了一部分学生进行“掷实心球”的项目测试.成绩低于6米为不合格,成绩在6至8米(含6米不含8米)的为及格,成绩在8米至12米(含8米和12米,假定该市初二学生掷实心球均不超过12米)为优秀.把获得的所有数据,分成[2,4),[4,6),[6,8),[8,10),[10,12]五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在10米到12米之间.
(Ⅰ)求实数a的值及参加“掷实心球”项目测试的人数;
(Ⅱ)根据此次测试成绩的结果,试估计从该市初二年级男生中任意选取一人,“掷实心球”成绩为优秀的概率;
(Ⅲ)若从此次测试成绩不合格的男生中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区二模)已知等差数列{an}的公差为-2,a3是a1与a4的等比中项,则首项a1=
8
8
,前n项和Sn=
-n2+9n
-n2+9n

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区二模)已知函数f(x)=a•2|x|+1(a≠0),定义函数F(x)=
f(x),x>0
-f(x),x<0
给出下列命题:
①F(x)=|f(x)|; 
②函数F(x)是奇函数;
③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,
其中所有正确命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区二模)点P是棱长为1的正方体ABCD-A1B1C1D1的底面A1B1C1D1上一点,则
PA
PC1
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区二模)在△ABC中,角A,B,C所对的边分别为a,b,c,且f(A)=2cos
A
2
sin(π-
A
2
)
+sin2
A
2
-cos2
A
2

(Ⅰ)求函数f(A)的最大值;
(Ⅱ)若f(A)=0,C=
12
,a=
6
,求b的值.

查看答案和解析>>

同步练习册答案