精英家教网 > 高中数学 > 题目详情

【题目】如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1 , 焦点为F2;以F1 , F2为焦点,离心率e=的椭圆C2与抛物线C1在x轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动.
当m=1时,求椭圆C2的方程;

【答案】解:当m=1时,y2=4x,则F1(﹣1,0),F2(1,0)
设椭圆方程为=1(a>b>0),则c=1,又e==,所以a=2,b2=3
所以椭圆C2方程为=1
【解析】当m=1时,y2=4x,则F1(﹣1,0),F2(1,0).设椭圆方程为(a>b>0),由题设条件知c=1,a=2,b2=3,由此可知椭圆C2方程为
【考点精析】掌握椭圆的标准方程是解答本题的根本,需要知道椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线 的方程为,点的坐标为.

(1)求过点且与直线平行的直线方程;

(2)求过点且与直线垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对任意,都有.

(1)若函数的顶点坐标为,求的解析式;

(2)函数的最小值记为,求函数上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}(n=1,2,3,4,5)满足a1=a5=0,且当2≤k≤5时,(ak﹣ak﹣12=1,令S= , 则S不可能的值是(  )
A.4
B.0
C.1
D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}前n项和Sn满足Sn+1=a2Sn+a1 , 其中a2≠0.
(Ⅰ)求证数列{an}是首项为1的等比数列;
(Ⅱ)当a2=2时,是否存在等差数列{bn},使得a1bn+a2bn﹣1+a3bn﹣2+…+anb1=2n+1﹣n﹣2对一切n∈N*都成立?若存在,求出bn;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道(是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口的中点,分别落在线段上.已知米,米,记

(1)试将污水净化管道的长度表示为的函数,并写出定义域;

(2)若,求此时管道的长度

(3)当取何值时,污水净化效果最好?并求出此时管道的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三内角分别为,向量, ,记函数,

(1)若,求的面积;

(2)若关于的方程有两个不同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在区间[a,b]上的连续函数y=f(x),如果,使得,则称为区间[a,b]上的中值点,下列函数:

; ②; ③; ④中,在区间[O,1]中值点多于一个的函数序号为( )

A. ①② B. ①③ C. ②③ D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有16人.

(Ⅰ)试问在抽取的学生中,男、女生各有多少人?
(Ⅱ)根据频率分布直方图,完成下列的2×2列联表,并判断能有多大(百分几)的把握认为“身高与性别有关”?

≥170cm

<170cm

总计

男生身高

女生身高

总计

(Ⅲ)在上述80名学生中,从身高在170~175cm之间的学生中按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.
参考公式:K2=
参考数据:

P(K2≥k0

0.025

0.010

0.005

0.001

k0

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案