精英家教网 > 高中数学 > 题目详情
已知A,B是抛物线上的两个动点,为坐标原点,非零向量满足
(Ⅰ)求证:直线经过一定点;
(Ⅱ)当的中点到直线的距离的最小值为时,求的值.
,p=2
(1)证明 , .设A,B两点的坐标为(),(
.
经过AB两点的直线方程为
,得
. 令,得, .   
从而. (否则, 有一个为零向量),
. 代入①,得 ,始终经过定点
(2)解 设AB中点的坐标为(),
 .

     ①
AB的中点到直线的距离.
将①代入,得.
因为d的最小值为.   
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

过圆外一点,作圆的割线,求割线被圆截得的弦的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,左焦点为F1,其右焦点F2和右准线分别是抛物线的顶点和准线.
⑴求椭圆C的方程;
⑵若点P为椭圆上C的点,△PF1F2的内切圆的半径为,求点Px轴的距离;
⑶若点P为椭圆C上的一个动点,当∠F1PF2为钝角时求点P的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=4x.
(1)若椭圆左焦点及相应的准线与抛物线C的焦点F及准线l分别重合,试求椭圆短轴端点B与焦点F连线中点P的轨迹方程;
(2)若M(m,0)是x轴上的一定点,Q是(1)所求轨迹上任一点,试问|MQ|有无最小值?若有,求出其值;若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
过抛物线的对称轴上一点的直线与抛物线相交于MN两点,自MN向直线作垂线,垂足分别为。           
(Ⅰ)当时,求证:
(Ⅱ)记 、的面积分别为,是否存在,使得对任意的,都有成立。若存在,求出的值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题





的坐标;
(2)已知AB求点C使
(3)已知椭圆两焦点F1F2,离心率e=0.8。求此椭圆长轴上
两顶点的坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线中心在原点,坐标轴为对称轴,与圆x2+y2=17交于A(4,-1).若圆在点A的切线与双曲线的一条渐近线平行,求双曲线的方程.

查看答案和解析>>

同步练习册答案