精英家教网 > 高中数学 > 题目详情
设定义在R上的函数f(x)=
1
|x-2
,x≠2
1,x=2
,若关于x的方程f2(x)+af(x)+b=3有3个不同实数解x1、x2、x3,且x1<x2<x3,则下列说法中正确的是

①a+b=0;②x1+x3>2x2;③x1+x3=5;④.x12+x22+x32=14.
分析:题中原方程f2(x)+af(x)+b=3有且只有3个不同实数解,即要求对应于方程:f(x)=某个常数,有3个不同实数解,故先根据题意作出f(x)的简图,由图可知,只有当f(x)=1时,它有三个根.故关于x的方程f2(x)+af(x)+b=3有且只有3个不同实数解,即解分别是1,2,3.从而问题解决.
解答:解:作出f(x)的简图:
由图可知,只有当f(x)=1时,它有三个根.
故关于x的方程f2(x)+af(x)+b=3有且只有3个不同实数解,
即解分别是1,2,3.
故x12+x22+x32=12+22+32=14.
故答案为:④.
点评:本小题主要考查函数的零点与方程根的关系、函数的图象等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)=
1
x-2
(x>2)
1
2-x
(x<2)
1(x=2)
,若关于x的方程f2(x)+af(x)+b=3有且只有3个不同实数解x1、x2、x3,且x1<x2<x3,则x12+x22+x32=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)满足f(x)•f(x+2)=3,若f(1)=2,则f(5)=
2
2
;f(2011)=
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)设定义在R上的函数f(x)是最小正周期为2π的偶函数,f′(x)是f(x)的导函数.当x∈[0,π]时,0<f(x)<1;当x∈(0,π)且x≠
π
2
时,(x-
π
2
)f′(x)<0
.则函数y=f(x)-cosx在[-3π,3π]上的零点个数为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)满足f(x+π)=f(x-π),f(
π
2
-x
)=f(
π
2
+x
),当x∈[-
π
2
π
2
]
时,0<f(x)<1;当x∈(-
π
2
π
2
)
且x≠0时,x•f′(x)<0,则y=f(x)与y=cosx的图象在[-2π,2π]上的交点个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)同时满足以下条件:①f(x+1)=-f(x)对任意的x都成立;②当x∈[0,1]时,f(x)=ex-e•cos
πx
2
+m(其中e=2.71828…是自然对数的底数,m是常数).记f(x)在区间[2013,2016]上的零点个数为n,则(  )
A、m=-
1
2
,n=6
B、m=1-e,n=5
C、m=-
1
2
,n=3
D、m=e-1,n=4

查看答案和解析>>

同步练习册答案