【题目】已知函数()
(1)当时,求曲线在点处的切线方程;
(2)若在定义域内为单调函数,求实数的取值范围.
【答案】(1);(2).
【解析】
(1)对函数求导,解得函数在点处切线的斜率,根据点斜式即可求得切线方程;
(2)构造函数,利用导数求解其值域,再根据与之间的关系,求解恒成立问题即可得参数的范围.
(1)当时,,故;
故可得,
故切线方程为:,整理得.
故曲线在点处的切线方程为.
(2)因为,故可得.
若在定义域内为单调函数,则恒成立,或恒成立.
构造函数,故可得,
令,解得,
故在区间上单调递增,在区间上单调递减.
故,且当趋近于0时,趋近于0.
故.
若要保证在定义域内恒成立,即恒成立,
即在定义域内恒成立,则只需;
若要保证在定义域内恒成立,则恒成立,
则在定义域内恒成立,但没有最小值,故舍去.
综上所述,要保证在定义域内为单调函数,
则.
科目:高中数学 来源: 题型:
【题目】等差数列{an}的前n项和为Sn,且=9,S6=60.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足bn+1﹣bn=(n∈N+)且b1=3,求数列的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点,,直线、相交于点,且它们的斜率之积为,记动点的轨迹为曲线。
(1)求曲线的方程;
(2)过点的直线与曲线交于、两点,是否存在定点,使得直线与斜率之积为定值,若存在,求出坐标;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,过点的动圆恒与轴相切,为该圆的直径,设点的轨迹为曲线.
(1)求曲线的方程;
(2)过点的任意直线与曲线交于点,为的中点,过点作轴的平行线交曲线于点,关于点的对称点为,除以外,直线与是否有其它公共点?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设动圆经过点,且与圆为圆心)相内切.
(Ⅰ)求动圆圆心的轨迹的方程;
(Ⅱ)设经过的直线与轨迹交于、两点,且满足的点也在轨迹上,求四边形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知圆C过点P(1,1),且与圆M:关于直线对称.
(1)求圆C的方程:
(2)设Q为圆C上的一个动点,求最小值;
(3)过点P作两条相异直线分别与圆C交与A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP与直线AB是否平行?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面是菱形,底面,分别是的中点,,,.
(I)证明:;
(II)求直线与平面所成角的正弦值;
(III)在边上是否存在点,使与所成角的余弦值为,若存在,确定点位置;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com