精英家教网 > 高中数学 > 题目详情

设向量
(1)若,求的值
(2)设函数,求的取值范围

(1);(2).

解析试题分析: (1)利用向量的模长公式化简得到关于关系式,进而求得的值,再利用三角函数值,结合角的范围求得的值;(2)利用三角恒等变形化成,再利用三角函数的图像与性质求解.规律总结:1.涉及平面向量的模长、数量积等运算时,要合理选用公式(向量形式或坐标形式); 2.三角恒等变形的关键,要正确运用公式及其变形,如:二倍角公式的变形
在某区间的值域时,一定要结合正弦函数、余弦函数的图像求解.
注意点:学生对公式及其变形运用的灵活性不够,学生应加强公式的记忆和应用;求的值域时,学生不善于利用数形结合思想,往往想当然,最大值为1,最小值为-1.
试题解析:(1)


=
的取值范围是.
考点:1.平面向量的数量积,2.三角恒等变形,3.三角函数的图像与性质

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

已知向量满足,则          

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)若,求
(2)若垂直,求当为何值时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为坐标原点,=(),=(1,), 
(1)若的定义域为[-],求y=的单调递增区间;
(2)若的定义域为[],值域为[2,5],求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设向量满足||=||=1,且|2-|=
(1)求的值;       
(2)求夹角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知, 且
(1) 求函数的解析式;
(2) 当时, 的最小值是-4 , 求此时函数的最大值, 并求出相应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点为,若过点且斜率为的直线与抛物线相交于两点,且
(1)求抛物线的方程;
(2)设直线为抛物线的切线,且,上一点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:=1(a>b>0)的离心率e=,椭圆C的上、下顶点分别为A1,A2,左、右顶点分别为B1,B2,左、右焦点分别为F1,F2.原点到直线A2B2的距离为

(1)求椭圆C的方程;
(2)过原点且斜率为的直线l,与椭圆交于E,F点,试判断∠EF2F是锐角、直角还是钝角,并写出理由;
(3)P是椭圆上异于A1,A2的任一点,直线PA1,PA2,分别交轴于点N,M,若直线OT与过点M,N 的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知:,则向量b与的夹角是       

查看答案和解析>>

同步练习册答案