精英家教网 > 高中数学 > 题目详情
4.已知AD为△ABC边BC的中线,且$\overrightarrow{AB}•\overrightarrow{AC}=-16,|{\overrightarrow{BC}}|=10$,则$|{\overrightarrow{AD}}|$=(  )
A.2B.3C.4D.6

分析 可画出图形,对$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$的两边平方即可求出${\overrightarrow{AC}}^{2}+{\overrightarrow{AB}}^{2}=68$,而对$\overrightarrow{AD}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$的两边平方,即可求出${\overrightarrow{AD}}^{2}$的值,从而求出$|\overrightarrow{AD}|$的值.

解答 解:如图,
$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$;
∴${\overrightarrow{BC}}^{2}={\overrightarrow{AC}}^{2}-2\overrightarrow{AB}•\overrightarrow{AC}+{\overrightarrow{AB}}^{2}$;
∴$100={\overrightarrow{AC}}^{2}+32+{\overrightarrow{AB}}^{2}$;
∴${\overrightarrow{AC}}^{2}+{\overrightarrow{AB}}^{2}=68$;
又$\overrightarrow{AD}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$;
∴${\overrightarrow{AD}}^{2}=\frac{1}{4}({\overrightarrow{AB}}^{2}+2\overrightarrow{AB}•\overrightarrow{AC}+{\overrightarrow{AC}}^{2})$=$\frac{1}{4}×(68-32)=9$;
∴$|\overrightarrow{AD}|=3$.
故选B.

点评 考查向量减法的几何意义,向量加法的平行四边形法则,以及向量数量积的运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.过点P(2,-3)的等轴双曲线的标准方程为(  )
A.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{5}$=1B.$\frac{{x}^{2}}{13}$-$\frac{{y}^{2}}{13}$=1C.$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{5}$=1D.$\frac{{y}^{2}}{13}$-$\frac{{x}^{2}}{13}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过点P(-4,0)作函数y=$\sqrt{4-{x}^{2}}$的切线l,则切线l的方程为(  )
A.y=$\sqrt{3}$(x+4)B.y=$\frac{\sqrt{3}}{3}$(x+4)C.y=$\frac{\sqrt{2}}{2}$(x+4)D.y=$\sqrt{2}$(x+4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数y=ax(a>0且a≠1)是减函数,则下列函数图象正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数$f(x)=\frac{{3-{x^2}}}{e^x}$在区间(m,m+2)上单调递减,则实数m的取值范围为[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,a,b,c分别是A,B,C的对边,且满足bsinA+bcosA=c.
(1)求B;
(2)若角A的平分线与BC相交于D点,AD=AC,BD=2求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.给出程序框图如图所示,若输入n=20,则输出S=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.0D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知命题p:实数m满足m2-7am+12a2<0(a>0),命题q:实数m满足方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{6-m}$=1表示焦点在y轴上的椭圆.
(1)当a=1时,若p∧q为真,求m的取值范围;
(2)若非q是非p的充分不必要条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知实数x,y满足条件$\left\{\begin{array}{l}{0≤x≤2}\\{0≤y≤2}\\{x+y≤3}\end{array}\right.$,则z=2x+y+3的最大值是(  )
A.3B.5C.7D.8

查看答案和解析>>

同步练习册答案