精英家教网 > 高中数学 > 题目详情

【题目】已知a+b=1,对a,b∈(0,+∞), + ≥|2x﹣1|﹣|x+1|恒成立,
(1)求 + 的最小值;
(2)求x的取值范围.

【答案】
(1)解:∵a>0,b>0且a+b=1

=

当且仅当b=2a时等号成立,又a+b=1,即 时,等号成立,

的最小值为9.


(2)解:因为对a,b∈(0,+∞),使 恒成立,

所以|2x﹣1|﹣|x+1|≤9,

当 x≤﹣1时,2﹣x≤9,∴﹣7≤x≤﹣1,

时,﹣3x≤9,∴

时,x﹣2≤9,∴ ,∴﹣7≤x≤11.


【解析】(1)利用“1”的代换,化简 + ,结合基本不等式求解表达式的最小值;(2)利用第一问的结果.通过绝对值不等式的解法,即可求x的取值范围.
【考点精析】掌握基本不等式在最值问题中的应用是解答本题的根本,需要知道用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<ex的解集为(
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是奇函数又是增函数的为(

A. B. C. D. y=ln

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为抛物线上存在一点到焦点的距离等于3.

(1)求抛物线的方程;

(2)过点的直线与抛物线相交于两点(两点在轴上方),点关于轴的对称点为的外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径.过点C作圆O的切线交BA的延长线于点F.

(1)求证:ACBC=ADAE;
(2)若AF=2,CF=2 ,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1) 判断函数的单调性并给出证明;

(2)若存在实数使函数是奇函数,求

(3)对于(2)中的,若,当时恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为:yx2-200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.

该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+1|﹣2|x|.
(1)求不等式f(x)≤﹣6的解集;
(2)若存在实数x满足f(x)=log2a,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在区间上的值域.

(1)求的值;

(2)若不等式上恒成立,求实数的取值范围;

(3)若函数有三个零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案