精英家教网 > 高中数学 > 题目详情
如图,A1B1C1—ABC是直三棱柱,∠BCA=90°,点D1、F1分别是A1B1、A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是             .
解:取BC的中点D,连接D1F1,F1D
∴D1B∥D1F∴∠DF1A就是BD1与AF1所成角
设BC=CA=CC1=2,则AD=,AF1=,DF1=,在△DF1A中,cos∠DF1A=.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,两矩形ABCD、ABEF所在平面互相垂直,DE与平面ABCD及平面所成角分别为30°、45°,M、N分别为DE与DB的中点,且MN=1.
(I) 求证:MN⊥平面ABCD

(II) 求线段AB的长;
(III)求二面角A-DE-B的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于直线以及平面,下面命题中正确的是
A.若
B.若
C.若
D.若,且,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法正确的是(    )
A.有两个面平行,其余各面都是四边形的几何体叫棱柱.
B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.
C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥.
D.棱台各侧棱的延长线交于一点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知正方体的棱长为,长为的线段的一个端点在棱上运动,点在正方形内运动,则中点的轨迹的面积为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

两个不重合的平面可以把空间分成________部分.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知异面直线A.与b成80的角,p为空间一定点,则过点p与A.,b所成的角都是50的直线有且仅有(     ).
A.  1条      B .2条         C.3条        D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

下面三个图中,右面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在左面画出(单位:cm).


(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图:在四棱锥中,底面是矩形,平面是线段上的点,是线段上的点,且

(1)判断与平面的关系,并证明;
(2)当时,证明:面平面.

查看答案和解析>>

同步练习册答案