¸½¼ÓÌ⣺Èçͼ£¬¹ýÍÖÔ²C£º
y2
a2
+
x2
b2
=1
£¨a£¾b£¾0£©ÉÏÒ»¶¯µãPÒýÔ²x2+y2=b2µÄÁ½ÌõÇÐÏßPA£¬PB£¨A£¬BΪÇе㣩£®Ö±ÏßABÓëxÖá¡¢yÖá·Ö±ð½»ÓÚM¡¢NÁ½µã£®
¢ÙÒÑÖªPµãµÄ×ø±êΪ£¨x0£¬y0£©£¬²¢ÇÒx0•y0¡Ù0£¬ÊÔÇóÖ±ÏßABµÄ·½³Ì£»    
¢ÚÈôÍÖÔ²µÄ¶ÌÖ᳤Ϊ8£¬²¢ÇÒ
a2
|OM|2
+
b2
|ON|2
=
25
16
£¬ÇóÍÖÔ²CµÄ·½³Ì£»
¢ÛÍÖÔ²CÉÏÊÇ·ñ´æÔÚP£¬ÓÉPÏòÔ²OËùÒýÁ½ÌõÇÐÏß»¥Ïà´¹Ö±£¿Èô´æÔÚ£¬Çó³ö´æÔÚµÄÌõ¼þ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÉèA £¨x1£¬y1£©£¬B £¨x2£¬y2£©£¬ÇÐÏßPA£ºx1x+y1y=b2£¬PB£ºx2x+y2y=b2£¬ÓÉPµãÔÚÇÐÏßPA¡¢PBÉÏ£¬ÄÜÇó³öÖ±ÏßABµÄ·½³Ì£®
£¨2£©ÔÚx0x+y0y=b2ÖУ¬2b=8⇒b=4£¬b2=16£¬·Ö±ðÁîy=0£¬µÃ|OM|=
16
x0
£¬x=0 µÃ|ON|=
16
y0
£®´úÈë
a2
|OM|2
+
b2
|ON|2
=
25
16
£¬µÃ£º
a2x02
162
+
y02
16
=
25
16
£®ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨3£©¼ÙÉè´æÔÚµãP£¨x0£¬y0£©Âú×ãPA¡ÍPB£¬Á¬OA¡¢OB£¬ÓÉ|PA|=|PB|£¬ÖªËıßÐÎPAOBΪÕý·½ÐΣ¬|OP|=
2
|OA|£®ËùÒÔx02+y02=2b2£¬ÓÖPÔÚÍÖÔ²ÉÏ£¬ËùÒÔa2x02+b2y02=a2b2£¬ËùÒÔx02=
b2(a2-2b2)
a2-b2
£¬y02=
a2b2
a2-b2
£®ÓÉ´ËÖªµ±a2¡Ý2b2£¾0ʱ£¬ÍÖÔ²CÉÏ´æÔÚµãP1Âú×ãÌõ¼þ£¬µ±a2£¼2b2ʱ£¬ÍÖÔ²CÉϲ»´æÔÚÂú×ãÌõ¼þµÄµãP£®
½â´ð£º½â£º£¨1£©ÉèA £¨x1£¬y1£©£¬B £¨x2£¬y2£©ÇÐÏßPA£ºx1x+y1y=b2£¬PB£ºx2x+y2y=b2£¬
¡ßPµãÔÚÇÐÏßPA¡¢PBÉÏ£¬¡àx1x0+y1y0=b2£¬x2x0+y2y0=b2£®
¡àÖ±ÏßABµÄ·½³ÌΪx0x+y0y=b2£®
£¨2£©ÔÚx0x+y0y=b2ÖУ¬2b=8⇒b=4£¬b2=16£¬
·Ö±ðÁîy=0£¬µÃ|OM|=
16
x0
£¬x=0 µÃ|ON|=
16
y0

´úÈë
a2
|OM|2
+
b2
|ON|2
=
25
16
£¬µÃ£º
a2x02
162
+
y02
16
=
25
16
¢Ù
ÓÖP£¨x0£¬y0£©ÔÚÍÖÔ²ÉÏ£º
y02
a2
+
x02
16
=1
¢Úy02=(1-
x02
16
)a2
´úÈë¢Ù⇒a2=25¡àËùÇóÍÖԲΪ£º
y2
25
+
x2
16
=1
£¨xy¡Ù0£©
£¨3£©¼ÙÉè´æÔÚµãP£¨x0£¬y0£©Âú×ãPA¡ÍPB£¬Á¬OA¡¢OB£¬
ÓÉ|PA|=|PB|£¬ÖªËıßÐÎPAOBΪÕý·½ÐΣ¬|OP|=
2
|OA|¡àx02+y02=2b2¢ÙÓÖPÔÚÍÖÔ²ÉÏ¡àa2x02+b2y02=a2b2¢Ú
ÓÉ¢Ù¡¢¢ÚÖª£ºx02=
b2(a2-2b2)
a2-b2
£¬y02=
a2b2
a2-b2
¡ßa£¾b£¾0¡àa2£¾b2£¬
ËùÒÔ µ±a2¡Ý2b2£¾0£¬¼´a¡Ý
2
b
ʱ£¬ÍÖÔ²CÉÏ´æÔÚµãP1Âú×ãÌõ¼þ£¬
µ±a2£¼2b2£¬¼´b£¼a£¼
2
b
ʱ£¬ÍÖÔ²CÉϲ»´æÔÚÂú×ãÌõ¼þµÄµãP£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÓ¦ÓÃÄÜÁ¦£¬¾ßÌåÉæ¼°µ½¹ì¼£·½³ÌµÄÇ󷨼°Ö±ÏßÓëÍÖÔ²µÄÏà¹Ø֪ʶ£¬½âÌâʱҪעÒâºÏÀíµØ½øÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍø¸½¼ÓÌ⣺
A£®Èçͼ£¬ËıßÐÎABCDÄÚ½ÓÓÚÔ²O£¬»¡AB=»¡AD£¬¹ýAµãµÄÇÐÏß½»CBµÄÑÓ³¤ÏßÓÚEµã£®
ÇóÖ¤£ºAB2=BE•CD£®
B£®ÉèÊýÁÐ{an}£¬{bn}Âú×ãan+1=3an+2bn£¬bn+1=2bn£¬ÇÒÂú×ã
an+4
bn+4
=M
an
bn
£¬ÊÔÇó¶þ½×¾ØÕóM£®
C£®ÒÑÖªÍÖÔ²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ2=
12
3cos2¦È+4sin2¦È
£¬µãF1£¬F2ΪÆä×ó¡¢ÓÒ½¹µã£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=2+
2
2
t
y=
2
2
t
£¨tΪ²ÎÊý£¬t¡ÊR£©£®ÇóµãF1£¬F2µ½Ö±ÏßlµÄ¾àÀëÖ®ºÍ£®
D£®ÒÑÖªx£¬y£¬z¾ùΪÕýÊý£®ÇóÖ¤£º
x
yz
+
y
zx
+
z
xy
¡Ý
1
x
+
1
y
+
1
z
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

¸½¼ÓÌ⣺Èçͼ£¬¹ýÍÖÔ²C£ºÊýѧ¹«Ê½£¨a£¾b£¾0£©ÉÏÒ»¶¯µãPÒýÔ²x2+y2=b2µÄÁ½ÌõÇÐÏßPA£¬PB£¨A£¬BΪÇе㣩£®Ö±ÏßABÓëxÖá¡¢yÖá·Ö±ð½»ÓÚM¡¢NÁ½µã£®
¢ÙÒÑÖªPµãµÄ×ø±êΪ£¨x0£¬y0£©£¬²¢ÇÒx0•y0¡Ù0£¬ÊÔÇóÖ±ÏßABµÄ·½³Ì£»¡¡¡¡
¢ÚÈôÍÖÔ²µÄ¶ÌÖ᳤Ϊ8£¬²¢ÇÒÊýѧ¹«Ê½£¬ÇóÍÖÔ²CµÄ·½³Ì£»
¢ÛÍÖÔ²CÉÏÊÇ·ñ´æÔÚP£¬ÓÉPÏòÔ²OËùÒýÁ½ÌõÇÐÏß»¥Ïà´¹Ö±£¿Èô´æÔÚ£¬Çó³ö´æÔÚµÄÌõ¼þ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010Äê½­ËÕÊ¡Ì©Öݸ߼¶ÖÐѧ¸ß¿¼ÊýѧģÄâÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

¸½¼ÓÌ⣺
A£®Èçͼ£¬ËıßÐÎABCDÄÚ½ÓÓÚÔ²O£¬»¡AB=»¡AD£¬¹ýAµãµÄÇÐÏß½»CBµÄÑÓ³¤ÏßÓÚEµã£®
ÇóÖ¤£ºAB2=BE•CD£®
B£®ÉèÊýÁÐ{an}£¬{bn}Âú×ãan+1=3an+2bn£¬bn+1=2bn£¬ÇÒÂú×ã=M£¬ÊÔÇó¶þ½×¾ØÕóM£®
C£®ÒÑÖªÍÖÔ²CµÄ¼«×ø±ê·½³ÌΪ£¬µãF1£¬F2ΪÆä×ó¡¢ÓÒ½¹µã£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£¨tΪ²ÎÊý£¬t¡ÊR£©£®ÇóµãF1£¬F2µ½Ö±ÏßlµÄ¾àÀëÖ®ºÍ£®
D£®ÒÑÖªx£¬y£¬z¾ùΪÕýÊý£®ÇóÖ¤£º£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸