精英家教网 > 高中数学 > 题目详情
5.已知两点A(1,y1),B(x2,y2)在一次函数y=x+1的图象上,若|$\overrightarrow{AB}$|=2$\sqrt{2}$,求两点A、B的坐标及向量$\overrightarrow{AB}$的坐标.

分析 根据一次函数的性质即可求出A的坐标,根据向量模的运算,求出B点的坐标,再根据向量的运算求出向量$\overrightarrow{AB}$的坐标.

解答 解:两点A(1,y1),B(x2,y2)在一次函数y=x+1的图象上,
∴y1=1+1=2,y2=x2+1,①,
∴A(1,2),
∵|$\overrightarrow{AB}$|=2$\sqrt{2}$,
∴(x2-1)2+(y2-2)2=8,②,
由①②解得,x2=3,y2=4或x2=-1,y2=0,
∴B(3,4),或(-1,0),
∴$\overrightarrow{AB}$=(2,2),或$\overrightarrow{AB}$=(-2,-2).

点评 本题以一次函数为载体,考查了向量的坐标运算和向量的模的运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\frac{x}{{x}^{2}+x+1}$的值域是(  )
A.[-1,$\frac{1}{3}$)B.(-1,$\frac{1}{3}$]C.(-1,$\frac{1}{3}$)D.[-1,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a>0且a≠1,f(x)=${a}^{x}-\frac{1}{{a}^{x}}$
(1)判断函数f(x)是否有零点,若有求出零点;
(2)判断函数f(x)的奇偶性;
(3)讨论f(x)的单调性并用单调性定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,已知长方体的棱AB=BC=5,AA1=$\sqrt{5}$,则BC1与A1D1所成角的正切值是$\frac{\sqrt{5}}{5}$,BC1与B1D1所成角的余弦值是$\frac{\sqrt{15}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知非零向量$\overrightarrow{a},\overrightarrow{b}$,$\overrightarrow{AB}=\overrightarrow{a}+2\overrightarrow{b}$,$\overrightarrow{BC}=2\overrightarrow{a}-\overrightarrow{b}$,$\overrightarrow{CD}=\overrightarrow{a}+7\overrightarrow{b}$.
(1)试问:A,B,C,D四个点能否在一条直线上?证明你的结论.
(2)若A,B,C,D四点中仅有三点共线,求$\overrightarrow{a}$与$\overrightarrow{b}$满足的条件,并说明三点共线的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(sinβ,cosβ),α∈(0,π),β(0,2π),tan$\frac{β}{2}$=$\frac{1}{2}$,$\overrightarrow{a}•\overrightarrow{b}=\frac{5}{13}$,
求(1)sinβ,cosβ(2)sinα

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知定义在R上的函数f(x)满足①图象关于(1,0)点对称;②f(-1+x)=f(-1-x);③x∈[-1,1]时,f(x)=$\left\{\begin{array}{l}{1{-x}^{2},x∈[-1,0]}\\{cos\frac{π}{2}x,x∈(0,1]}\end{array}\right.$,则函数y=f(x)-($\frac{1}{2}$)|x|在区间[-3,3]上的零点个数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知复数z1,z2满足|z1|=1,|z2|=2,求|z1-2z2|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.正方体ABCD-A1B1C1D1的棱长为a,M、N、P、Q分别在棱A1D1、A1B1、B1C1、BC上移动,则四面体MNPQ的最大体积是$\frac{1}{6}$a3

查看答案和解析>>

同步练习册答案