精英家教网 > 高中数学 > 题目详情
10.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$,满足$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=0,已知$\overrightarrow{a}$、$\overrightarrow{b}$成60°角,且$\overrightarrow{a}$、$\overrightarrow{b}$的大小分别为2和4,则$\overrightarrow{c}$的大小为(  )
A.6B.2C.2$\sqrt{5}$D.2$\sqrt{7}$

分析 根据三角形的余弦公式计算即可.

解答 解:由题意得:
${|\overrightarrow{c}|}^{2}$=${|\overrightarrow{a}|}^{2}$+${|\overrightarrow{b}|}^{2}$-2|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cos120°=4+16-2×2×4×(-$\frac{1}{2}$)=28,
故|$\overrightarrow{c}$|=2$\sqrt{7}$,
故选:D.

点评 本题考查了向量问题,考查三角形的余弦公式,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数f(x)=lg(-x)+$\frac{1}{x}$的零点所在区间为(  )
A.(-$\frac{1}{2}$,0)B.(-3,-2)C.(-2,-1)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数g(x)=x(x2-1),则g(x)在区间[0,1]上的最大值为(  )
A.-1B.0C.-$\frac{2\sqrt{3}}{9}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.要得到函数$y=sin(\frac{π}{4}-3x)$的图象,只需要将函数y=sin3x的图象(  )m.
A.向右平移$\frac{π}{4}$个单位B.向左平移$\frac{π}{4}$个单位
C.向右平移$\frac{π}{12}$个单位D.向左平移$\frac{π}{12}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,|$\overrightarrow{a}$-$\overrightarrow{b}$|=2.
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$的值;
(2)求|$\overrightarrow{a}$+$\overrightarrow{b}$|的值.
(3)求$\overrightarrow{a}$在$\overrightarrow{b}$上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(3,1),则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.5名学生站成一排照相,甲、乙之间必须间隔一人的排法共(  )
A.12种B.18种C.24种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的一个焦点坐标为(2$\sqrt{3}$,0)则实数a的值为(  )
A.8B.2$\sqrt{2}$C.16D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体最长的棱长为(  )
A.$4\sqrt{3}$B.$4\sqrt{2}$C.6D.$2\sqrt{5}$

查看答案和解析>>

同步练习册答案