【题目】已知函数, .
(Ⅰ)若和在有相同的单调区间,求的取值范围;
(Ⅱ)令(),若在定义域内有两个不同的极值点.
(i)求的取值范围;
(ii)设两个极值点分别为, ,证明: .
【答案】(Ⅰ)(Ⅱ)(i)(ii)详见解析
【解析】【试题分析】(1)借助题设条件,运用导数与函数的单调性之间的关系分析求解;(2)先依据题设条件将问题进行等价转化,再运用导数知识分析求解:
(Ⅰ).函数的定义域为, ,
当时, ;当时, .
所以在上单调递减,在上单调递增.
若在上单调递减,在上单调递增,
则.
(Ⅱ)(i)依题意,函数的定义域为, ,
所以方程在有两个不同根.
即方程在有两个不同根,
转化为,函数与函数的图象在有两个不同交点,如图.
可见,若令过原点且切于函数图象的直线斜率为,
只需.
令切点,所以,又,所以,
解得,于是,所以.
(ii)由(i)可知, 分别是方程的两个根,
即, ,不妨设,作差得,即,
原不等式等价于,即,即,
令,则, ,即,
设, , ,
∴函数在上单调递增,∴,即不等式成立,
故所证不等式成立.
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)在如图所示的五面体中,面为直角梯形, ,平面平面, , 是边长为2的正三角形.
(1)证明: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(数学(文)卷·2017届湖北省沙市中学高三上学期第七次双周练第16题)埃及数学中有一个独特现象:除用一个单独的符号表示以外,其它分数都要写成若干个单分数和的形式.例如可以这样理解:假定有两个面包,要平均分给5个人,如果每人,不够,每人,余,再将这分成5份,每人得,这样每人分得.形如的分数的分解: , , ,按此规律, =____________; = ____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点与其短轴得一个端点是正三角形的三个顶点,点在椭圆上,直线与椭圆交于两点,与轴, 轴分别相交于点合点,且,点时点关于轴的对称点, 的延长线交椭圆于点,过点分别做轴的垂线,垂足分别为.
(1) 求椭圆的方程;
(2)是否存在直线,使得点平分线段?若存在,请求出直线的方程;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆(),以椭圆内一点为中点作弦,设线段的中垂线与椭圆相交于, 两点.
(Ⅰ)求椭圆的离心率;
(Ⅱ)试判断是否存在这样的,使得, , , 在同一个圆上,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是平行四边形, ,侧面底面, , , 分别为的中点,点在线段上.
(Ⅰ)求证: 平面;
(Ⅱ)如果直线与平面所成的角和直线与平面所成的角相等,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市理论预测2010年到2014年人口总数与年份的关系如下表所示
年份2010+x(年) | 0 | 1 | 2 | 3 | 4 |
人口数y(十万) | 5 | 7 | 8 | 11 | 19 |
(1)请根据上表提供的数据,求出y关于x的线性回归方程;
(2) 据此估计2015年该城市人口总数。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com