精英家教网 > 高中数学 > 题目详情
某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有16人.

(Ⅰ)试问在抽取的学生中,男、女生各有多少人?
(Ⅱ)根据频率分布直方图,完成下列的2×2列联表,并判断能有多大(百分儿)的把握认为“身高与性别有关”?
附:
P(x2≥k) 0.05 0.01
k 3.841 6.635
  ≥170cm <170cm 总计
男生身高      
女生身高      
总计      
x2=
n(n11n22-n12n21)2
n1+n2+n1+n2

(Ⅲ)在上述80名学生中,从身高在170~175cm之间的学生中按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.
分析:(Ⅰ)直方图中,求出身高在170~175cm的男生的频率,利用身高在170~175cm的男生人数有16人,可求男生数、女生的人数.
(Ⅱ)男生身高≥170cm的人数=(0.08+0.04+0.02+0.01)×5×40=30,女生身高≥170cm的人数为0.02×5×40=4,从而可得列联表,利用公式,求得K2,与临界值比较后,即可得到结论;
(Ⅲ)在170~175cm之间的男生有16人,女生人数有4人,按分层抽样的方法抽出5人,则男生占4人,女生占1人. 利用列举法确定从5人任选3名的所有可能,3人中恰好有一名女生的所有可能,即可求得概率.
解答:解:(Ⅰ)直方图中,因为身高在170~175cm的男生的频率为0.08×5=0.4,
设男生数为n1,则0.4=
16
n1
,得n1=40.
由男生的人数为40,得女生的人数为80-40=40.
(Ⅱ)男生身高≥170cm的人数=(0.08+0.04+0.02+0.01)×5×40=30,
女生身高≥170cm的人数为0.02×5×40=4,
所以可得到下列列联表:
≥170cm <170cm 总计
男生身高 30 10 40
女生身高 4 36 40
总计 34 46 80
K2=
80(30×36-10×4)2
40×40×34×46
≈34.57>6.635,所以能有99.9%的把握认为身高与性别有关;  
(Ⅲ)在170~175cm之间的男生有16人,女生人数有4人,按分层抽样的方法抽出5人,则男生占4人,女生占1人. 
设男生为A1,A2,A3,A4,女生为B.
从5人任选3名有:(A1,A2,A3),(A1,A2,A4),(A1,A2,B),(A1,A3,A4),(A1,A3,B),(A1,A4,B),(A2,A3,A4),(A2,A3,B),(A2,A4,B),(A3,A4,B),共10种可能,
3人中恰好有一名女生有:(A1,A2,B),(A1,A3,B),(A1,A4,B),(A2,A3,B),(A2,A4,B),(A3,A4,B),共6种可能,
故所求概率为
6
10
=
3
5
点评:本题考查统计知识,考查独立性检验,考查古典概型,解题的关键是读懂直方图,正确计算基本事件的个数
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•泉州模拟)某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1)和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有16人.
(I)试问在抽取的学生中,男、女生各有多少人?
(II)根据频率分布直方图,完成下列的2×2列联表,并判断能有多大(百分几)的把握认为“身高与性别有关”?
≥170cm <170cm 总计
男生身高
女生身高
总计
(Ⅲ)在上述80名学生中,从身高在170~175cm之间的学生按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170 ~175cm的男生人数有16人.

       图(1)                       图(2)

       (Ⅰ)试问在抽取的学生中,男、女生各有多少人?

       (Ⅱ)根据频率分布直方图,完成下列的2×2列联表,并判断能有多大(百分几)的把握认为“身高与性别有关”?

≥170cm

<170cm

总计

男生身高

女生身高

总计

       (Ⅲ)在上述80名学生中,从身高在170~175cm之间的学生中按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.

        参考公式:

       参考数据:

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源:2012年福建省泉州市高三3月质量检查数学试卷(文科)(解析版) 题型:解答题

某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1)和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有16人.
(I)试问在抽取的学生中,男、女生各有多少人?
(II)根据频率分布直方图,完成下列的2×2列联表,并判断能有多大(百分几)的把握认为“身高与性别有关”?
≥170cm<170cm总计
男生身高
女生身高
总计
(Ⅲ)在上述80名学生中,从身高在170~175cm之间的学生按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.

查看答案和解析>>

科目:高中数学 来源:福建省泉州市2011-2012学年高三3月质量检查试题数学文(2012泉州质检) 题型:解答题

 

某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170 ~175cm的男生人数有16人.

图(1)                       图(2)

(Ⅰ)试问在抽取的学生中,男、女生各有多少人?

(Ⅱ)根据频率分布直方图,完成下列的2×2列联表,并判断能有多大(百分几)的把握认为“身高与性别有关”?

 

≥170cm

<170cm

总计

男生身高

 

 

 

女生身高

 

 

 

总计

 

 

 

(Ⅲ)在上述80名学生中,从身高在170~175cm之间的学生中按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.

     参考公式:

参考数据:

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

 

 

 

 

 

查看答案和解析>>

同步练习册答案