精英家教网 > 高中数学 > 题目详情
9.已知向量$\overrightarrow{m}$=$(\sqrt{3},1)$,$\overrightarrow{n}$=(0,-1),$\overrightarrow{k}$=$(t,\sqrt{3})$,若$\overrightarrow{m}$-2$\overrightarrow{n}$与$\overrightarrow{k}$共线,则t的值为(  )
A.-2B.-1C.0D.1

分析 求出向量$\overrightarrow{m}$-2$\overrightarrow{n}$,利用向量共线,列出方程求解即可.

解答 解:向量$\overrightarrow{m}$=$(\sqrt{3},1)$,$\overrightarrow{n}$=(0,-1),$\overrightarrow{k}$=$(t,\sqrt{3})$,$\overrightarrow{m}$-2$\overrightarrow{n}$=($\sqrt{3}$,3).
$\overrightarrow{m}$-2$\overrightarrow{n}$与$\overrightarrow{k}$共线,可得:$\sqrt{3}×\sqrt{3}=3t$.解得t=1.
故选:D.

点评 本题考查向量共线的充要条件的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=4cosωx•sin(ωx+$\frac{π}{6}$)+a(ω>0)图象与y轴的交点为(0,1),且图象上相邻两条对称轴之间的距离为$\frac{π}{2}$.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若f(α)=$\frac{4}{3}$,求sin(4α-$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在四棱锥E-ABCD中,底面ABCD为梯形,AB∥CD,AB=2CD,M为AE的中点,设E-ABCD的体积为V,那么三棱锥M-EBC的体积为(  )
A.$\frac{1}{5}V$B.$\frac{2}{5}V$C.$\frac{1}{3}V$D.$\frac{2}{3}V$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.对任意非零实数a、b,定义一种运算:a?b,其结果y=a?b的值由如图确定,则$({{{log}_2}8})?{({\frac{1}{2}})^{-2}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各组函数中,表示同一函数的是(  )
A.f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$B.f(x)=2x,g(x)=2(x+1)
C.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2D.f(x)=$\frac{{x}^{2}+1}{x+1}$,g(x)=x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知椭圆的中心在原点,以坐标轴为对称轴,且长轴长是短轴长的3倍,并且经过点P(3,0),求椭圆方程;
(2)与双曲线x2-2y2=2有公共渐近线,且过点M(2,-2),求此双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.椭圆4x2+9y2=36的焦点坐标是(  )
A.(0,±3)B.(0,±$\sqrt{5}$)C.(±3,0)D.(±$\sqrt{5}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设双曲线C:$\frac{{x}^{2}}{4}$-y2=λ(λ≠0),其中左准线方程为x=-$\frac{4\sqrt{10}}{5}$.
(1)求λ的值及左右两焦点F1,F2的坐标;
(2)设M是双曲线C上一点,且|OM|=$2\sqrt{2}$,F1,F2是椭圆E的两个顶点,并且椭圆E过点M,求椭圆E的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=$\sqrt{ln\sqrt{2x-1}}$+$\frac{1}{2+x}$的定义域是[1,+∞).

查看答案和解析>>

同步练习册答案