精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中, 平面 ,且.

(1)求棱所成的角的大小;

(2)在棱上确定一点,使二面角的平面角的余弦值为.

【答案】(1) (2)

【解析】试题分析:(1)因为ABAC,A1B⊥平面ABC,所以以A为坐标原点,分别以AC、AB所在直线分别为x轴和y轴,以过A,且平行于BA1的直线为z轴建立空间直角坐标系,由AB=AC=A1B=2求出所要用到的点的坐标,求出棱AA1BC上的两个向量,由向量的夹角求棱AA1BC所成的角的大小;
(2)设棱B1C1上的一点P,由向量共线得到P点的坐标,然后求出两个平面PAB与平面ABA1的一个法向量,把二面角P-AB-A1的平面角的余弦值为转化为它们法向量所成角的余弦值,由此确定出P点的坐标.

试题解析:

解(1)如图,以为原点建立空间直角坐标系,

.

与棱所成的角是.

(2)为棱中点,

,则.

设平面的法向量为

而平面的法向量是,则

解得,即为棱中点,其坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】201991日,《西安市生活垃圾分类管理办法》正式实施.根据规定,生活垃圾分为可回收物、有害垃圾、厨余垃圾和其他垃圾,个人和单位如果不按规定进行垃圾分类将面临罚款,并纳入征信系统.为调查市民对垃圾分类的了解程度,某调查小组随机抽取了某小区的100位市民,请他们指出生活中若干项常见垃圾的种类,把能准确分类不少于3项的称为比较了解,少于三项的称为不太了解.调查结果如下:

0

1

2

3

4

5

5项以上

男(人)

1

5

15

8

6

7

3

女(人)

0

4

11

13

10

12

5

1)完成如下列联表并判断是否有99%的把握认为了解垃圾分类与性别有关?

比较了解

不太了解

合计

合计

2)从对垃圾分类比较了解的市民中用分层抽样的方式抽取8位,现从这8位市民中随机选取两位,求至多有一位男市民的概率.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数在其定义域内为单调函数,求的取值范围;

2)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家规定每年的日以后的天为当年的暑假.某钢琴培训机构对位钢琴老师暑假一天的授课量进行了统计,如下表所示:

授课量(单位:小时)

频数

培训机构专业人员统计近年该校每年暑假天的课时量情况如下表:

课时量(单位:天)

频数

(同组数据以这组数据的中间值作代表)

1)估计位钢琴老师一日的授课量的平均数;

2)若以(1)中确定的平均数作为上述一天的授课量.已知当地授课价为/小时,每天的各类生活成本为/天;若不授课,不计成本,请依据往年的统计数据,估计一位钢琴老师天暑假授课利润不少于万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面ABCD为直角梯形,平面ABCD,E是棱PC上的一点.

(1)证明:平面平面 .

(2)若,F是PB的中点,,求直线DF与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知两点分别为椭圆的右顶点和上顶点,且,右准线的方程为.

1)求椭圆的标准方程;

2)过点的直线交椭圆于另一点,交于点.若以为直径的圆经过原点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现给出两个条件:①,②,从中选出一个条件补充在下面的问题中,并以此为依据求解问题:(选出一种可行的条件解答,若两个都选,则按第一个解答计分)在中,分别为内角所对的边( ).

1)求

2)若,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系x0y中,把曲线α为参数)上每个点的横坐标变为原来的倍,纵坐标不变,得到曲线以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程

1)写出的普通方程和的直角坐标方程;

2)设点M上,点N上,求|MN|的最小值以及此时M的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的图像上存在两个不同的点关于轴对称,则称函数图像上存在一对偶点

1)写出函数图像上一对偶点的坐标;(不需写出过程)

2)证明:函数图像上有且只有一对偶点

3)若函数图像上有且只有一对偶点,求的取值范围.

查看答案和解析>>

同步练习册答案