【题目】直角三角形中,是的中点,是线段上一个动点,且,如图所示,沿将翻折至,使得平面平面.
(1)当时,证明:平面;
(2)是否存在,使得与平面所成的角的正弦值是?若存在,求出的值;若不存在,请说明理由.
【答案】(1)证明见解析;(2)答案见解析.
【解析】试题分析:
(1)由题意可得,取的中点,连接交于,当时,由几何关系可证得平面.则.利用线面垂直的判断定理可得平面.
(2)建立空间直角坐标系,结合直线的方向向量与平面的法向量计算可得存在,使得与平面所成的角的正弦值为.
试题解析:
(1)在中,,即,
则,
取的中点,连接交于,
当时,是的中点,而是的中点,
∴是的中位线,∴.
在中,是的中点,
∴是的中点.
在中,,
∴,则.
又平面平面,平面平面,
∴平面.
又平面,∴.
而,∴平面.
(2)以为原点,所在直线为轴,所在直线为轴,建立如图所示空间直角坐标系.
则,,,,
由(1)知是中点,,而平面平面.
∴平面,
则.
假设存在满足题意的,则由.
可得,
则.
设平面的一个法向量为,
则即
令,可得,,即.
∴与平面所成的角的正弦值
.
解得(舍去).
综上,存在,使得与平面所成的角的正弦值为.
科目:高中数学 来源: 题型:
【题目】对于给定的正整数,如果各项均为正数的数列满足:对任意正整数,
总成立,那么称是“数列”.
(1)若是各项均为正数的等比数列,判断是否为“数列”,并说明理由;
(2)若既是“数列”,又是“数列”,求证: 是等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】心理学家发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学,给所有同学几何和代数各一题,让各位同学自由选择一道题进行解答.统计情况如下表:(单位:人)
(1)能否据此判断有的把握认为视觉和空间能力与性别有关?
(2)经过多次测试发现:女生甲解答一道几何题所用的时间在5—7分钟,女生乙解答一道几何题所用的时间在6—8分钟,现甲、乙两人独立解答同一道几何题,求乙比甲先解答完的概率;
(3)现从选择几何题的8名女生中任意抽取两人对她们的答题情况进行研究,记甲、乙两名女生被抽到的人数为,求的分布列及数学期望.
附表及公式
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某单位的食堂中,食堂每天以10元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂购进了80斤米粉,以(斤)(其中)表示米粉的需求量, (元)表示利润.
(1)计算当天米粉需求量的平均数,并直接写出需求量的众数和中位数;
(2)估计该天食堂利润不少于760元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C: 的左、右顶点分别为A1、A2,点P在C上且直线PA2的斜率的取值范围是[-2,-1],那么直线PA1斜率的取值范围是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx和g(x)=m(x2-1)(m∈R).
(1)m=1时,求方程f(x)=g(x)的实根;
(2)若对任意的x∈(1,+∞),函数y=g(x)的图象总在函数y=f(x)图象的上方,求m的取值范围;
(3)求证: ++…+>ln(2n+1) (n∈N*).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com