精英家教网 > 高中数学 > 题目详情

(山东卷理)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,EF分别是BC, PC的中点.

(Ⅰ)证明:AEPD;

(Ⅱ)若HPD上的动点,EH与平面PAD所成最大角的正切值为,求二面角EAFC的余弦值.

解:(Ⅰ)证明:由四边形为菱形,,可得为正三角形.

因为的中点,所以

,因此

因为平面平面,所以

平面平面

所以平面.又平面,所以

(Ⅱ)解:设上任意一点,连接

由(Ⅰ)知平面

与平面所成的角.

中,

所以当最短时,最大,

即当时,最大.

此时

因此.又,所以,所以

解法一:因为平面平面,所以平面平面

,则平面

,连接,则为二面角的平面角,

中,

的中点,在中,

中,,即所求二面角的余弦值为

解法二:由(Ⅰ)知两两垂直,以为坐标原点,建立如图所示的空间直角坐标系,又分别为的中点,所以

所以

设平面的一法向量为

因此,则

因为,所以平面

为平面的一法向量.

,所以

因为二面角为锐角,所以所求二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(07年山东卷理)(12分)

如图,在直四棱柱中,已知

,,.

(I)设的中点,求证: ;

(II)求二面角的余弦值.

                                                     

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年山东卷理)如图,已知正三棱柱ABC-A1B1C1的所有棱长都相等,D是A1C1的 中点,则直线AD 与平面B1DC所成角的正弦值为            .

  (15题图)

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年山东卷理)(12分)

如图,已知平面平行于三棱锥的底面ABC,等边△所在的平面与底面ABC垂直,且∠ACB=90°,设

(1)求证直线是异面直线的公垂线;

(2)求点A到平面VBC的距离;

(3)求二面角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:

(山东卷理)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,EF分别是BC, PC的中点.

(Ⅰ)证明:AEPD;

(Ⅱ)若HPD上的动点,EH与平面PAD所成最大角的正切值为,求二面角EAFC的余弦值.

查看答案和解析>>

同步练习册答案