精英家教网 > 高中数学 > 题目详情
已知a∈R,则“
a
a-1
≤0”是“指数函数y=ax在R上为减函数”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
分析:结合不等式的解法和指数函数单调性的性质,利用充分条件和必要条件的定义进行判断即可.
解答:解:由
a
a-1
≤0的a(a-1)≤0且a-1≠0,解得0≤a<1,
若指数函数y=ax在R上为减函数,则0<a<1,
∴“
a
a-1
≤0”是“指数函数y=ax在R上为减函数”的必要不充分条件.
故选:B.
点评:主要是考查了充分条件的判定的运用,利用不等式的解法和指数函数的单调性是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x+1-a
a-x
(a∈R)

(1)证明函数y=f(x)的图象关于点(a,-1)成中心对称图形;
(2)当x∈[a+1,a+2]时,求证:f(x)∈[-2,-
3
2
]

(3)我们利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造数列的过程中,如果xi(i=2,3,4,…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.
(i)如果可以用上述方法构造出一个常数列{xn},求实数a的取值范围;
(ii)如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2+(1+a)x+1+a+b=0(a,b∈R)的两根分别为x1、x2,且0<x1<1<x2,则
aa+b
的取值范围是
(-∞,-1)∪(2,+∞)
(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx3+nx2(m、n∈R,m≠0)的图象在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,
b-a
b
<ln
b
a
b-a
a
(可不用证明函数的连续性和可导性).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,则“指数函数y=ax-1在R上为增函数”是“
a
a-1
>0
”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案