精英家教网 > 高中数学 > 题目详情

【题目】“a≤0”是“函数f(x)=|(ax﹣1)x|在区间(0,+∞)内单调递增”的(
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件

【答案】C
【解析】解:当a=0时,f(x)=|x|,在区间(0,+∞)内单调递增. 当a<0时,
结合二次函数图象可知函数f(x)=|(ax﹣1)x|在区间(0,+∞)内单调递增.
若a>0,则函数f(x)=|(ax﹣1)x|,其图象如图
它在区间(0,+∞)内有增有减,
从而若函数f(x)=|(ax﹣1)x|在区间(0,+∞)内单调递增则a≤0.
∴a≤0是”函数f(x)=|(ax﹣1)x|在区间(0,+∞)内单调递增”的充要条件.
故选:C.

对a分类讨论,利用二次函数的图象与单调性、充要条件即可判断出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知O为△ABC内一点,且 ,若B,O,D三点共线,则t的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,AD=4,BD=8,平面PAD⊥平面ABCD,AB=2DC=4 . (Ⅰ)设M是线段PC上的一点,证明:平面BDM⊥平面PAD
(Ⅱ)求四棱锥P﹣ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一条直线与一个平面成72°角,则这条直线与这个平面内经过斜足的直线所成角中最大角等于(
A.72°
B.90°
C.108°
D.180°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆: + =1(a>b>0),离心率为 ,焦点F1(0,﹣c),F2(0,c)过F1的直线交椭圆于M,N两点,且△F2MN的周长为4. (I) 求椭圆方程;
(II) 与y轴不重合的直线l与y轴交于点P(0,m)(m≠0),与椭圆C交于相异两点A,B且 .若 =4 ,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥P﹣ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E为PC的中点,点F在PA上,且2PF=FA.
(1)求证:BE⊥平面PAC;
(2)求直线AB与平面BEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″是f′(x)的导数,若方程f″(x)=0有实数解x0 , 则称点(x0 , f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.请你根据这一发现,求:函数 对称中心为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有四个函数:①y=xsinx;②y=xcosx;③y=x|cosx|;④y=x2x的图象(部分)如图:
则按照从左到右图象对应的函数序号安排正确的一组是(
A.①④③②
B.③④②①
C.④①②③
D.①④②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为

W

12

15

18

P

0.3

0.5

0.2

该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(1)求Z的分布列和均值;
(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.

查看答案和解析>>

同步练习册答案