精英家教网 > 高中数学 > 题目详情
14.(1)将参数方程转化为普通方程:$\left\{{\begin{array}{l}{x=sinθ+cosθ}\\{y=1+sin2θ}\end{array}}\right.({θ为参数})$
(2)求椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$的参数方程:
①设x=3cosφ,φ为参数;
②设y=2t,t为参数.

分析 (1)消去参数,可得普通方程,注意变量的范围;
(2)利用不同参数,结合普通方程,即可得出结论.

解答 解:(1)x=sinθ+cosθ=$\sqrt{2}$sin(θ+45°)∈[-$\sqrt{2}$,$\sqrt{2}$],
第一个方程平方,结合第二个方程,可得普通方程y=x2,x∈[-$\sqrt{2}$,$\sqrt{2}$],
(2)①设x=3cosφ,y=2sinφ,参数方程为$\left\{\begin{array}{l}{x=3cosφ}\\{y=2sinφ}\end{array}\right.$(φ为参数);
②设y=2t,则x=$±3\sqrt{1-{t}^{2}}$,参数方程为$\left\{\begin{array}{l}{x=±3\sqrt{1-{t}^{2}}}\\{y=2t}\end{array}\right.$(t为参数).

点评 本题考查参数方程与普通方程的互化,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若命题“?x∈[1,5],使x2+ax+2>0”为真命题,则实数a的取值范围为(  )
A.$(-\frac{27}{5},+∞)$B.(-3,+∞)C.$(-2\sqrt{2},+∞)$D.$(-3,-2\sqrt{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知两点A(0,1),B(4,3),则线段AB的垂直平分线方程是2x+y-6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=2sin(2x+$\frac{π}{6}$),则f(x)的单调递增区间是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知${({x+a})^2}{({2x-\frac{1}{x}})^5}$的展开式中不含x3的项,则a=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=sin(ωx+ϕ),A>0,ω>0,若f(x)在区间$[\frac{π}{6},\frac{π}{2}]$上单调,且$f({\frac{π}{2}})=f({\frac{2π}{3}})=-f({\frac{π}{6}})$,则f(x)的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点A是抛物线C:x2=2py(p>0)上一点,O为坐标原点,若A,B是以点M(0,9)为圆心,|OA|的长为半径的圆与抛物线C的两个公共点,且△ABO为等边三角形,则p的值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知sinα是方程5x2-7x-6=0的根.求$\frac{{sin({-α-\frac{3}{2}π})•sin({\frac{3}{2}π-α})•{{tan}^2}(2π-α)}}{{cos({\frac{π}{2}-α})•cos({\frac{π}{2}+α})•cot(π-α)}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知{an}为等差数列,若a1+a2+a3=$\frac{π}{2}$,a7+a8+a9=π,则cosa5的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步练习册答案