精英家教网 > 高中数学 > 题目详情

如图所示的三棱锥A-BCD中,∠BAD=90°,AD⊥BC,AD=4,AB=AC=2,∠BAC=120°,若点P为△ABC内的动点满足直线DP与平面ABC所成角的正切值为2,则点P在△ABC内所成的轨迹的长度为              

 

【答案】

【解析】

试题分析:因为∠BAD=90°,所以AD⊥AB,又AD⊥BC,且ABBC=B,所以AD⊥平面ABC。

在平面ABC内,取点P,连PA,则是DP与平面ABC所成角。

又因为AD=4,所以直线DP与平面ABC所成角的正切值为2,须AP=2,即点P在△ABC内所成的轨迹是以A为圆心,半径为2 的圆的一部分。

而∠BAC=120°=,故点P在△ABC内所成的轨迹的长度为=

考点:本题主要考查立体几何中的垂直关系,角的计算,圆的定义,扇形弧长公式。

点评:典型题,综合性较强,考查知识全面,可谓之是“证算并重题”,较好地考查了数形结合思想及学生的逻辑推理能力、计算能力。解答本题的关键是认识到“点P在△ABC内所成的轨迹是以A为圆心,半径为2 的圆的一部分。”

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正方形ABCD的边长为2
2
,将△ABC沿对角线AC折起,使平面ABC⊥平面ACD,得到如图所示的三棱锥B-ACD.若O为AC边的中点,M,N分别为线段DC,BO上的动点(不包括端点),且BN=CM.设BN=x,则三棱锥N-AMC的体积y=f(x)的函数图象大致是(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年云南省昭通市毕业生复习统一检测文科数学试卷(解析版) 题型:选择题

已知正方形的边长为,将沿对角线折起,使平面平面,得到如图所示的三棱锥.若边的中点,分别为线段上的动点(不包括端点),且.设,则三棱锥的体积的函数图象大致是

A.                B.                  C.                 D.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市朝阳区高三上学期期末考试理科数学 题型:选择题

已知正方形的边长为,将沿对角线折起,使平面平面,得到如图所示的三棱锥.若边的中点,分别为线段上的动点(不包括端点),且.设,则三棱锥的体积的函数图象大致是(   )

 

 

   A.                 B.

 

 

C.                       D.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正方形ABCD的边长为2
2
,将△ABC沿对角线AC折起,使平面ABC⊥平面ACD,得到如图所示的三棱锥B-ACD.若O为AC边的中点,M,N分别为线段DC,BO上的动点(不包括端点),且BN=CM.设BN=x,则三棱锥N-AMC的体积y=f(x)的函数图象大致是(  )
A.
精英家教网
B.
精英家教网
C.
精英家教网
D.
精英家教网
精英家教网

查看答案和解析>>

同步练习册答案