精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中, 底面 .

1)求直线所成角的大小;

(2)证明: .

【答案】(1)见解析(2)见解析

【解析】试题分析:(1)取PD中点M,连结EM,AM.推导出四边形ABEM为平行四边形,从而BEAM,进而MAD为异面直线BE与AD所成角(或补角),由此能求出异面直线BE与AD所成角.

(2)推导出PA⊥CD,CD⊥DA,从而CD平面PAD,进而CDAM,再由BEAM,能证明BE⊥CD.

试题解析:

1)如图,取中点连结

由于分别为的中点,故

四边形为平行四边形,

为异面直线所成角(或补角),

中,

异面直线所成角为.

2)证明:底面

平面

平面

又由(1)得

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线 ,圆

(1)求证:直线与圆总相交;

(2)求出相交的弦长的最小值及相应的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥A﹣BCDE中,AB⊥平面BCDE,四边形BCDE为矩形,F为AC的中点,AB=BC=2,BE=

(Ⅰ)证明:EF⊥BD;
(Ⅱ)在线段AE上是否存在一点G,使得二面角D﹣BG﹣E的大小为 ?若存在,求 的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为常数.

)若,求的取值范围.

)若对任意的都有不等式成立,求的值.

)在()的条件下,若函数的图像与轴恰有三个相异的公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , a1=1,an≠0,anan+1=4Sn﹣1.
(Ⅰ)求{an}的通项公式;
(Ⅱ)证明: + +…+ <2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是公差不为零的等差数列,a1=1,且a1 , a3 , a9成等比数列.
(1)求数列{an}的通项;
(2)设数列{an}的前n项和为Sn , 令 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(理科)已知函数f(x)=4x3+3tx2﹣6t2x+t﹣1,x∈R,t∈R.
(1)当t≠0时,求f(x)的单调区间;
(2)证明:对任意t∈(0,+∞),f(x)在区间(0,1)内均存在零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)为f(x)的导函数,求g(x)单调区间;
(2)已知函数f(x)在x=1处取得极大值,求实数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知线段AB的端点A的坐标为,端点B是圆: 上的动点.

(1)求过A点且与圆相交时的弦长为的直线的方程。

(2)求线段AB中点M的轨迹方程,并说明它是什么图形。

查看答案和解析>>

同步练习册答案