精英家教网 > 高中数学 > 题目详情
椭圆的中心在原点,其左焦点F1与抛物线y2=-4x的焦点重合,过F1的直线l与椭圆交于A,B两点,与抛物线交于C,D两点.当直线l与x轴垂直时,
|CD|
|AB|
=2
2

(Ⅰ)求椭圆的方程;
(Ⅱ)求过点O,F1,并且与椭圆的左准线相切的圆的方程;
(Ⅲ)求
F2A
F2B
的最值.
分析:(Ⅰ)又抛物线方程求椭圆中c的值,再根据椭圆与抛物线的通径比求出a,b关系式,椭圆方程可解.
(Ⅱ)由圆过点O,F1可得圆心横坐标值,再根据圆与椭圆的左准线相切,可求出半径.
(Ⅲ)设A(x1,y1),B(x2,y2),直线l方程与椭圆方程联立,得x1x2与x1+x2,再代入
F2A
F2B
,化简,即可得到关于k的式子,其范围也就是
F2A
F2B
的范围.进而求出最值.
解答:解:(Ⅰ)∵椭圆的中心在原点,其左焦点F1与抛物线y2=-4x的焦点重合,∴c=1
∵过F1的直线l与椭圆交于A,B两点,与抛物线交于C,D两点.当直线l与x轴垂直时,∴AB为椭圆通径,CD为抛物线通经,
|CD|
|AB|
=2
2
,∴
4
2b2
a
=2
2
,b2=
2
2
a,∵a2=b2+c2,得a=
2
,b=1,∴所求椭圆方程为
x2
2
+y2=1

(Ⅱ)∵所求圆过点O,F1,可设坐标为(-
1
2
,n),∵圆与椭圆的左准线相切,∴半径r=-
1
2
-(-2)=
3
2

(-
1
2
)
2
n2
=
3
2
,n=
2
,∴所求圆方程为(x+
1
2
)
2
+(y-
2
)
2
=
9
4

(Ⅲ)设A(x1,y1),B(x2,y2
①当直线l斜率存在时,设方程为y=k(x+1),代入椭圆方程,得,
x2
2
k2(x+1)2=1

∴x1x2=
2k2-2
1+2k2
,x1+x2=
-4k2
1+2k2
..
F2A
F2B
=(x1-1)(x2-1)+y1y2=
7k2-1
1+2k2
=
7
2
--
9
2
1+2k2

∵k2∈[0,+∞),∴
F2A
F2B
∈[-1,
7
2

②当直线l斜率不存在时,可得啊(-1,
2
2
)B(-1,-
2
2
),此时,
F2A
F2B
=
7
2

综上,
F2A
F2B
∈[1,
7
2
].∴
F2A
F2B
最大值为
7
2
,最小值为-1.
点评:本题考查了椭圆,抛物线与直线的综合应用,属常规题,应当掌握解法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆的中心在原点,其左焦点为F(-
2
,0),左准线l的方程为x=-
3
2
2
.PQ是过点F且与x轴不垂直的弦,PQ的中点M到左准线l的距离为d.
(1)求此椭圆的方程;    
(2)求证:
PQ
d
为定值;
(3)在l上是否存在点R,使△PQR为正三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网实轴长为4
3
的椭圆的中心在原点,其焦点F1,,F2在x轴上.抛物线的顶点在原点O,对称轴为y轴,两曲线在第一象限内相交于点A,且AF1⊥AF2,△AF1F2的面积为3.
(Ⅰ)求椭圆和抛物线的标准方程;
(Ⅱ)过点A作直线l分别与抛物线和椭圆交于B,C,若
AC
=2
AB
,求直线l的斜率k.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆的中心在原点,其左焦点与抛物线的焦点重合,过的直线与椭圆交于AB两点,与抛物线交于CD两点.当直线x轴垂直时,

(Ⅰ)求椭圆的方程;

(II)求过点O、,并且与椭圆的左准线相切的圆的方程;

(Ⅲ)求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省齐齐哈尔市高三三模文科数学试卷(解析版) 题型:解答题

如图,已知椭圆的中心在原点,其上、下顶点分别为,点在直线上,点到椭圆的左焦点的距离为.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设是椭圆上异于的任意一点,点轴上的射影为的中点,直线交直线于点的中点,试探究:在椭圆上运动时,直线与圆:的位置关系,并证明你的结论.

 

查看答案和解析>>

同步练习册答案