精英家教网 > 高中数学 > 题目详情

【题目】先阅读下列不等式的证法,再解决后面的问题:

已知,求证:.

证明:构造函数

.

因为对一切,恒有

所以,从而得.

1)若,请写出上述结论的推广式;

2)参考上述证法,对你推广的结论加以证明.

【答案】1)若,则;(2)略.

【解析】

试题(1)根据题干中的式子,类比写出求证: ;(2)构造函数f(x)=(xa1)2+(xa2)2+…+(xan)2,展开后是关于x的二次函数,函数大于等于0恒成立,即判别式小于等于0,从而得证.

解析:

(1)a1a2,…,an∈R,a1a2+…+an=1.

求证: .

(2)证明构造函数f(x)=(xa1)2+(xa2)2+…+(xan)2nx2-2(a1a2+…+an)xnx2-2x,

因为对一切x∈R,都有f(x)≥0,

所以Δ=4-4n()≤0,

从而证得≥..

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区某农产品近几年的产量统计如表:

年份

2012

2013

2014

2015

2016

2017

年份代码

1

2

3

4

5

6

年产量(万吨)

6.6

6.7

7

7.1

7.2

7.4

(1)根据表中数据,建立关于的线性回归方程

(2)根据线性回归方程预测2019年该地区该农产品的年产量.

附:. 参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是边长为2的正三角形,平面

(1)求证:平面平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1∶3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文、理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图如图所示.

(1)求a的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);

(2)填写下面的2×2列联表,并判断在犯错误的概率不超过0.05的前提下能否认为“获奖与学生的文、理科有关”.

文科生

理科生

总计

获奖

5

不获奖

总计

200

附表及公式:

P(K2k0)

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱锥中,O为顶点S在底面ABCD内的投影,P为侧棱SD的中点,且.

(1)证明:平面PAC.

(2)求直线BC与平面PAC的所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某市市民对政府出台楼市限购令的态度,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频数分布及对楼市限购令的赞成人数如下表:

月收入

频数

5

10

15

10

5

5

赞成人数

4

8

8

5

2

1

将月收入不低于55百元的人群称为“高收入族”,月收入低于55百元的人群称为“非高收入族”.

附:

0.100

0.050

0.010

0.001

/td>

2.706

3.841

6.635

10.828

非高收入族

高收入族

总计

赞成

不赞成

总计

1)根据已知条件完成下面的列联表,并判断有多大的把握认为赞不赞成楼市限购令与收入高低有关?

2)现从月收入在的人群中随机抽取两人,求所抽取的两人中至少有一人赞成楼市限购令的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:

(1)求圆的圆心C的坐标和半径长;

(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于两点,求证:为定值;

(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使的面积最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在各棱长均为2的正三棱柱中, 分别为棱的中点, 为线段上的动点,其中, 更靠近,且.

(1)证明: 平面

(2)若与平面所成角的正弦值为,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以三角形边为边向形外作正三角形,则三线共点,该点称为的正等角中心.当的每个内角都小于120时,正等角中心点P满足以下性质:

1;(2)正等角中心是到该三角形三个顶点距离之和最小的点(也即费马点).由以上性质得的最小值为_________

查看答案和解析>>

同步练习册答案