精英家教网 > 高中数学 > 题目详情
设函数g(x)=
1
3
x3+
1
2
ax2-bx(a,b∈R)
,在其图象上一点P(x,y)处的切线的斜率记为f(x).
(1)若方程f(x)=0有两个实根分别为-2和4,求f(x)的表达式;
(2)若g(x)在区间[-1,3]上是单调递减函数,求a2+b2的最小值.
(1)根据导数的几何意义知f(x)=g'(x)=x2+ax-b
由已知-2、4是方程x2+ax-b=0的两个实数
由韦达定理,
-2+4=-a
-2×4=-b
a=-2
b=8
,f(x)=x2-2x-8(7分)
(2)g(x)在区间[-1,3]上是单调减函数,
所以在[-1,3]区间上恒有f(x)=g'(x)=x2+ax-b≤0,即f(x)=x2+ax-b≤0在[-1,3]恒成立
这只需满足
f(-1)≤0
f(3)≤0
即可,也即
a+b≥1
b-3a≥9

而a2+b2可视为平面区域
a+b≥1
b-3a≥9
内的点到原点距离的平方,其中点(-2,3)距离原点最近,
所以当
a=-2
b=3
时,a2+b2有最小值13.(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数g(x)=
x
+1
,函数h(x)=
1
x+3
,x∈(-3,a]
,其中a为常数且a>0,令函数f(x)=g(x)•h(x).
(1)求函数f(x)的表达式,并求其定义域;
(2)当a=
1
4
时,求函数f(x)的值域;
(3)是否存在自然数a,使得函数f(x)的值域恰为[
1
3
1
2
]
?若存在,试写出所有满足条件的自然数a所构成的集合;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x1、x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点.
(Ⅰ)若x1=-
1
3
x2=1
,求函数f(x)的解析式;
(Ⅱ)若|x1|+|x2|=2
3
,求b的最大值;
(Ⅲ)若-
1
3
为函数f(x)的一个极值点,设函数g(x)=f′(x)-ax-
1
3
a
,当x∈[-
1
3
,a]
时求|g(x)|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx-ax+
1-a
x
-1

(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)当a=
1
3
时,求函数f(x)的单调区间;
(Ⅲ)在(Ⅱ)的条件下,设函数g(x)=x2-2bx-
5
12
,若对于?x1∈[1,2],?x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的图象与函数g(x)=(
1
3
)x
的图象关于直线y=x对称,设φ(x)=f(4x-x2),则函数φ(x)的递减区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-x2+3
,x∈[-1,t](t>-1).
(Ⅰ)当t=3时,求函数f(x)的单调区间和最值;
(Ⅱ)设函数g(t)=
1
3
(t-2)2,t>-1
.记方程f'(x)=g(t)的解为x0,x0∈(-1,t),就t的取值情况讨论x0的个数.

查看答案和解析>>

同步练习册答案