【题目】如图,在三棱柱中,侧棱底面,为的中点,.
(1)求证:平面;
(2)求四棱锥的体积.
【答案】(1)见解析;(2)3
【解析】试题分析:(1)欲证平面,根据线面平行的判定定理可知只需证与平面内一直线平行,连接,设与相交于点O,连接,根据中位线定理可知∥,平面,平面,满足定理所需条件;
(2)根据面面垂直的判定定理可知平面⊥平面,作,垂足为E,则⊥平面,然后求出棱长,最后根据四棱锥,的体积,即可求四棱锥的体积.
(1)证明:连接,设与相交于点,连接,
∵ 四边形是平行四边形,
∴点为的中点.
∵为的中点,
∴为△的中位线,
∴.
∵ 平面,平面,
∴平面.
(2)∵平面,平面,
∴ 平面 平面,且平面 平面 .
作,垂足为,则平面,
∵,,
在Rt△中,,,
∴四棱锥的体积
.
∴四棱锥的体积为.
科目:高中数学 来源: 题型:
【题目】【2018湖北七市(州)教研协作体3月高三联考】已知椭圆: 的左顶点为,上顶点为,直线与直线垂直,垂足为点,且点是线段的中点.
(I)求椭圆的方程;
(II)如图,若直线: 与椭圆交于, 两点,点在椭圆上,且四边形为平行四边形,求证:四边形的面积为定值.
【答案】(I);(II)
【解析】试题分析:(1)根据题意可得, 故斜率为,由直线与直线垂直,可得,因为点是线段的中点,∴点的坐标是,
代入直线得,连立方程即可得, ;(2)∵四边形为平行四边形,∴,设, , ,∴ ,得,将点坐标代入椭圆方程得,
点到直线的距离为,利用弦长公式得EF,则平行四边形的面积为
.
解析:(1)由题意知,椭圆的左顶点,上顶点,直线的斜率,
得,
因为点是线段的中点,∴点的坐标是,
由点在直线上,∴,且,
解得, ,
∴椭圆的方程为.
(2)设, , ,
将代入消去并整理得 ,
则, ,
,
∵四边形为平行四边形,∴ ,
得,将点坐标代入椭圆方程得,
点到直线的距离为, ,
∴平行四边形的面积为
.
故平行四边形的面积为定值.
【题型】解答题
【结束】
21
【题目】已知函数, .
(1)当时,讨论函数的单调性;
(2)当时,求证:函数有两个不相等的零点, ,且.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为原点,极轴为轴正方向建立平面直角坐标系,曲线的直角坐标方程是(为参数).
(Ⅰ)将曲线的参数方程化为普通方程;
(Ⅱ)求曲线与曲线交点的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是抛物线上的两个点,点的坐标为,直线的斜率为.设抛物线的焦点在直线的下方.
(Ⅰ)求k的取值范围;
(Ⅱ)设C为W上一点,且,过两点分别作W的切线,记两切线的交点为. 判断四边形是否为梯形,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为(为参数),直线与曲线相交于两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn.已知2Sn=3n+3.
(1)求{an}的通项公式;
(2)若数列{bn}满足anbn=log3an,求{bn}的前n项和Tn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com