精英家教网 > 高中数学 > 题目详情
已知椭圆的中心在坐标原点,焦点在y轴上,经过点(
3
,0),且离心率为
1
2
,则椭圆方程为
 
考点:椭圆的标准方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:依题意设椭圆的方程为
y2
a2
+
x2
b2
=1
(a>b>0),由题意知,b=
3
c
a
=
1
2
,根据c2=a2-b2求得a,则椭圆方程可得.
解答: 解:设椭圆的方程为:
y2
a2
+
x2
b2
=1
(a>b>0),
由题意知,b=
3
c
a
=
1
2

∵c2=a2-b2
∴a=2,
∴椭圆的方程是
y2
4
+
x2
3
=1

故答案为:
y2
4
+
x2
3
=1
点评:本题主要考查了椭圆的标准方程、待定系数法等.解题的关键是熟练掌握椭圆标准方程中a,b和c之间的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,若sin2A-sin2B>sin2C,则△ABC的形状是(  )
A、锐角三角形
B、直角三角形
C、钝角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(
π
2
)=
3
5
,则cos2θ=(  )
A、-
12
25
B、-
7
25
C、
7
25
D、
12
25

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x+1,那么f(x+1)关于直线x=2对称的曲线的解析式是(  )
A、y=x-6
B、y=6+x
C、y=6-x
D、y=-x-2

查看答案和解析>>

科目:高中数学 来源: 题型:

logmn=-1,则m+3n最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

三个变量y1,y2,y3随着变量x的变化情况如下表:
x1357911
y15135625171536456655
y2529245218919685177149
y356.106.616.957.207.40
则与x呈对数型函数、呈指数型函数、呈幂函数型函数变化的变量依次是(  )
A、y1,y2,y3
B、y2,y1,y3
C、y3,y2,y1
D、y3,y1,y2

查看答案和解析>>

科目:高中数学 来源: 题型:

某舰艇在A处测得遇险渔船在北偏东30°、距离为6
3
海里的B处,此时得知该渔船正在沿正东方向以每小时6
3
海里的速度航行,舰艇以每小时18海里的速度去救援,则舰艇追上渔船的最短时间是(  )
A、30分钟B、40分钟
C、50分钟D、60分钟

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈R,则a=-b是a2+b2≥-2ab的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差为3,若a1,a3,a4成等比数列,则a2等于(  )
A、-18B、-15
C、-12D、-9

查看答案和解析>>

同步练习册答案