【题目】已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)求数列{anbn}的前n项和为Tn(n∈N*).
【答案】(Ⅰ)an=3n﹣2,bn=2n;(Ⅱ)Tn=(6n﹣7)2n+4
【解析】
(1)根据题意,用等差数列和等比数列的基本量解方程,从而计算出数列的公差和公比即可求得通项公式;
(2)根据通项公式的特点,选用错位相减法求数列的前项和.
(Ⅰ)由题意,设等差数列{an}的公差为d,等比数列{bn}的公比为q,则q>0.
故2q(1+q)=12,解得q=2,
由题意,得,解得.
∴an=1+3(n﹣1)=3n﹣2;bn=22n﹣1=2n.
(Ⅱ)由(Ⅰ)知,anbn=(3n﹣2)2n.
∴Tn=a1b1+a2b2+…+anbn=12+422+…+(3n﹣2)2n,①
2Tn=122+423+…+(3n﹣5)2n+(3n﹣2)2n+1,②
①﹣②,得﹣Tn=12+322+323+…+32n﹣(3n﹣2)2n+1
=2+6(2++…+2n﹣1)﹣(3n﹣2)2n+1
=2+6(3n﹣2)2n+1
=(10﹣6n)2n﹣10
∴Tn=(6n﹣10)2n+10.
科目:高中数学 来源: 题型:
【题目】(本小题14分)
如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.
(Ⅰ)求证:PE⊥BC;
(Ⅱ)求证:平面PAB⊥平面PCD;
(Ⅲ)求证:EF∥平面PCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线过点和椭圆:的焦点且方向向量为,且椭圆的中心关于直线的对称点在直线上.
(1)求椭圆的方程;
(2)是否存在过点的直线交椭圆于点、,且满足(为原点)?若存在,求直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有甲、乙两家公司都需要招聘求职者,这两家公司的聘用信息如下:
甲公司 | 乙公司 | |||||||||
职位 | A | B | C | D | 职位 | A | B | C | D | |
月薪/元 | 6000 | 7000 | 8000 | 9000 | 月薪/元 | 5000 | 7000 | 9000 | 11000 | |
获得相应职位概率 | 0.4 | 0.3 | 0.2 | 0.1 | 获得相应职位概率 | 0.4 | 0.3 | 0.2 | 0.1 | |
(1)根据以上信息,如果你是该求职者,你会选择哪一家公司?说明理由;
(2)某课外实习作业小组调查了1000名职场人士,就选择这两家公司的意愿做了统计,得到以下数据分布:
选择意愿 人员结构 | 40岁以上(含40岁)男性 | 40岁以上(含40岁)女性 | 40岁以下男性 | 40岁以下女性 |
选择甲公司 | 110 | 120 | 140 | 80 |
选择乙公司 | 150 | 90 | 200 | 110 |
若分析选择意愿与年龄这两个分类变量,计算得到的K2的观测值为k1=5.5513,测得出“选择意愿与年龄有关系”的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大?
附:
0.050 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率,是椭圆上的动点,且点到椭圆焦点的距离的最小值为1.
(1)求椭圆的方程;
(2)过椭圆的右焦点的直线交椭圆于,两点,当时,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形中,为的中点,将沿直线翻折成,连结,为的中点,则在翻折过程中,下列说法中所有正确的是( )
A.存在某个位置,使得
B.翻折过程中,的长是定值
C.若,则
D.若,当三棱锥的体积最大时,三棱锥的外接球的表面积是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某医院治疗白血病有甲、乙两套方案,现就70名患者治疗后复发的情况进行了统计,得到其等高条形图如图所示(其中采用甲、乙两种治疗方案的患者人数之比为.
(1)补充完整列联表中的数据,并判断是否有把握认为甲乙两套治疗方案对患者白血病复发有影响;
复发 | 未复发 | 总计 | |
甲方案 | |||
乙方案 | 2 | ||
总计 | 70 |
(2)为改进“甲方案”,按分层抽样组成了由5名患者构成的样本,求随机抽取2名患者恰好是复发患者和未复发患者各1名的概率.
附:
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 |
,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com