精英家教网 > 高中数学 > 题目详情

【题目】国家规定每年的日以后的天为当年的暑假.某钢琴培训机构对位钢琴老师暑假一天的授课量进行了统计,如下表所示:

授课量(单位:小时)

频数

培训机构专业人员统计近年该校每年暑假天的课时量情况如下表:

课时量(单位:天)

频数

(同组数据以这组数据的中间值作代表)

1)估计位钢琴老师一日的授课量的平均数;

2)若以(1)中确定的平均数作为上述一天的授课量.已知当地授课价为/小时,每天的各类生活成本为/天;若不授课,不计成本,请依据往年的统计数据,估计一位钢琴老师天暑假授课利润不少于万元的概率.

【答案】1小时;(2.

【解析】

1)将每组的中点值乘以频数,相加后除以可得出位老师暑假一日的授课量的平均数;

2)设一位钢琴老师每年暑假天的授课天数为,计算出每位钢琴老师每日的利润,结合每位钢琴老师天暑假授课利润不少于万元求得的取值范围,再结合课时量频数表可得出所求事件的概率.

1)估计位老师暑假一日的授课量的平均数为小时;

2)设每年暑假天的授课天数为,则利润为.

,得.

一位老师暑假利润不少于万元,即授课天数不低于天,

天暑假内授课天数不低于天的频率为.

预测一位老师天暑假授课利润不少于万元的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某蛋糕店计划按天生产一种面包,每天生产量相同,生产成本每个6元,售价每个8元,未售出的面包降价处理,以每个5元的价格当天全部处理完.

1)若该蛋糕店一天生产30个这种面包,求当天的利润y(单位:元)关于当天需求量n(单位:个,)的函数解析式;

2)蛋糕店记录了30天这种面包的日需求量(单位:个),整理得表:

日需求量n

28

29

30

31

32

33

频数

3

4

6

6

7

4

假设蛋糕店在这30天内每天生产30个这种面包,求这30天的日利润(单位:元)的平均数及方差;

3)蛋糕店规定:若连续10天的日需求量都不超过10个,则立即停止这种面包的生产,现给出连续10天日需求量的统计数据为平均数为6,方差为2”,试根据该统计数据决策是否一定要停止这种面包的生产?并给出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,讨论极值点的个数;

2)若函数有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

已知曲线的极坐标方程为,以极点为直角坐标原点,以极轴为轴的正半轴建立平面直角坐标系,将曲线向左平移个单位长度,再将得到的曲线上的每一个点的横坐标缩短为原来的,纵坐标保持不变,得到曲线

(1)求曲线的直角坐标方程;

(2)已知直线的参数方程为,(为参数),点为曲线上的动点,求点到直线距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过抛物线C的焦点F的直线l交抛物线CAB两点,且AB两点在抛物线C的准线上的投影分别PQ

1)已知,若,求直线l的方程;

2)设PQ的中点为M,请判断PFMB的位置关系并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是空间两条不同的直线,是空间两个不同的平面.给出下列四个命题:

①若,则

②若,则

③若,则

④若,则

其中正确的是__________(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市教育局为了监控某校高一年级的素质教育过程,从该校高一年级16个班随机抽取了16个样本成绩,制表如下:

抽取次序

1

2

3

4

5

6

7

8

测评成绩

95

96

96

90

95

98

98

97

抽取次序

9

10

11

12

13

14

15

16

测评成绩

97

95

96

98

99

96

99

96

为抽取的第个学生的素质教育测评成绩,,经计算得,以下计算精确到0.01.

1)求的相关系数,并回答是否可以认为具有较强的相关性;

2)在抽取的样本成绩中,如果出现了在之外的成绩,就认为本学期的素质教育过程可能出现了异常情况,需对本学期的素质教学过程进行反思,同时对下学期的素质教育过程提出指导性的建议,从该校抽样的结果来看,是否需对本学期的素质教学过程进行反思,同时对下学期的素质教育过程提出指导性的建议?

附:样本的相关系数,若,则可以认为两个变量具有较强的线性相关性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴与短轴比值是2,椭圆C过点.

1)求椭圆C的标准方程;

2)过点作圆x2+y2=1的切线交椭圆CAB两点,记AOBO为坐标原点)的面积为SAOB,将SAOB表示为m的函数,并求SAOB的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的单调区间;

2)当,讨论的零点个数;

查看答案和解析>>

同步练习册答案