精英家教网 > 高中数学 > 题目详情
已知在平面直角坐标系xoy中,椭圆C:
x2
a2
+
y2
b2
=1,长半轴长为4,离心率为
1
2

(1)求椭圆C的标准方程;
(2)若点E(0,1),问是否存在直线l与椭圆交于M,N两点且|ME|=|NE|,若存在,求出直线l斜率的取值范围;若不存在,请说明理由.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)由已知得
a=4
e=
c
a
=
1
2
a2=b2+c2
,由此能求出椭圆方程.
(2)设直线l:y=kx+m,M(x1,y1),N(x2,y2)将直线l:y=kx+m与椭圆联立
y=kx+m
x2
16
+
y2
12
=1
,得(3+4k2)x2+8kmx+4m2-48=0,由此利用根的判别式、韦达定理、中点坐标公式,结合已知条件能求出直线l斜率的取值范围.
解答: 解:(1)∵椭圆C:
x2
a2
+
y2
b2
=1,长半轴长为4,离心率为
1
2

a=4
e=
c
a
=
1
2
a2=b2+c2
,解得a=4,b=2
3

∴椭圆C:
x2
16
+
y2
12
=1

(2)设直线l:y=kx+m,M(x1,y1),N(x2,y2
将直线l:y=kx+m与椭圆联立可得
y=kx+m
x2
16
+
y2
12
=1

消去y得(3+4k2)x2+8kmx+4m2-48=0,
∴△=64k2m2-4(3+4k2)(4m2-48)>0,
∴16k2+12>m2,①
x1+x2=
-8km
3+4k2
x1x2=
4m2-48
3+4k2

设MN中点F(x0,y0),
x0=
x1+x2
2
=
-4km
3+4k2
y0=kx0+m=
3m
3+4k2

∵ME|=|NE|,
∴EF⊥MN,
∴kEFk=-1,
3m
3+4k2
-1
-4km
3+4k2
•k=-1

∴m=-(4k2+3)代入①可得:16k2+12>(4k2+3)2
∴16k4+8k2-3<0
解得-
1
2
<k<
1
2

∴直线l斜率的取值范围是(-
1
2
1
2
).
点评:本题考查椭圆方程的求法,考查满足条件的直线方程是否存在的判断与求法,解题时要认真审题,注意根的判别式、韦达定理、中点坐标公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

按如表的规律,2014应当在(  )
  第一列 第二列 第三列 第四列 第五列
 第一行  2 4 6 8
  16 14 1210  
   18 20 22 24
  32 30 28 26 
A、第252行,第2列
B、第252行,第3列
C、第253行,第3列
D、第253行,第4列

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的图象在区间[a,b]上连续不断,给定下列的命题:
①若f(a)•f(b)<0,则f(x)在区间[a,b]上恰有1个零点;
②若f(a)•f(b)<0,则f(x)在区间[a,b]上至少有1个零点;
③若f(a)•f(b)>0,则f(x)在区间[a,b]上没有零点;
④若f(a)•f(b)>0,则f(x)在区间[a,b]上可能有零点.
其中正确的命题有
 
 (填写正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD中,AB=2,DE=EC,若F是线段BC上的一个动点,则
AE
AF
的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的焦点F在x轴上,且经过点Q(2,m),点Q到点F的距离为4.
(1)求抛物线的标准方程;
(2)若过M(0,3)作直线交抛物线于A、B,求AB的中点N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点A(-2,0),B(2,0),动点P在x轴上的射影为H,且
PA
PB
=λ•|
PH
|2,其中λ≥0
(1)求动点P(x,y)的轨迹C的方程并讨论C的轨迹形状
(2)过点A(-2,0)且斜率为1的直线交曲线C于M,N两点,若MN中点横坐标为-
2
3
.求实数λ?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(
2
,1),
b
=(sin(2x-
π
4
),0),函数f(x)=
a
b

(1)求函数f(x)的单调递减区间;
(2)当x∈[0,
π
2
]时,求函数f(x)的最值及相应x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=logax在区间[a,2a]上的最大值是最小值的3倍,则a等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

点P(x,y)在直线y=kx+2上,记T=|x|+|y|,若使T取得最小值的点P有无数个,则实数k的取值是
 

查看答案和解析>>

同步练习册答案